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Factor Graphs

Factor graphs allow to represent the product structure of a function.

They are bipartite graphs with two types of nodes:

e Factor node: @ Variable node: O
* Edges represent the dependency of factors on variables.

Example: consider the factorising probability density function

p(vs w, X,Ual) = fl (V,W)fz(w, X)f3 (X9y)f4(xa Z)

* What are the marginal distributions of the individual variables?
* What is p(w)?
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Factor trees: separation (1)

fa(x.2)

pw) =D > 3 > filv,w)f2(w,x)f3(x,y)fs(x,2)
v X y z

e If v, x, y and z take K values each, we have ~ 3K* products and ~ K* sums.

* Multiplication is distributive: c(a +b) = ca + cb.
The left hand is more efficient!
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Factor trees: separation (2)

@ . @‘ . ” f5(x,y)

fi(v,w) fo(w,x)

f4(x,2)

pw) = [ X filvw)| - [3 DY falw,x)fs(xy)falx,2)]
; STk

e From sums of products to products of sums.

* The complexity is now ~ 2K3.
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Factor trees: separation (3)

mpy (W) M fy (W) f(x,
O—w—o—a—c_ "

fa(v.w) fa(w,x)
fa(x.2)

pw) = [ fiw) - [3 33 falwy 0306 y)falx,2)
v X Yy z

me—w(w) me, 5w (W)

e Sums of products becomes products of sums of all messages from
neighbouring factors to variable.

Quifionero-Candela & Rasmussen (CUED) Lecture 13: Message passing on Factor Graphs 5/20



Messages: from factors to variables (1)

f4(x,2)

MW =D 3 fao(w,X)f3(x,y)fa(x,2)
xX Yy z

Quifionero-Candela & Rasmussen (CUED) Lecture 13: Message passing on Factor Graphs 6/20



Messages: from factors to variables (2)

fa(x,2)

M, (W Zfzwx {Zngxyﬂ;xz)}

My, (X)

* Factors only need to sum out all their local variables.
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Messages: from variables to factors (1)

fa(X,2)

men(x) =Y Y f3(%,y)fs(x,2)
y z
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Messages: from variables to factors (2)

M (0 = [ X f00y)| - [ X fatx2)
" -

LIFN ax (%) n1f4~>x(x)

* Variables pass on the product of all incoming messages.
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Factor graph marginalisation: summary

fa(xy)

O—a—>w—=n

fi(v,w) fo(w.x)

fax.2)

w=>>> Z f1(v, w)fa (w, x)f3(x, y)fa(x, z)
v x y
= [Zfl(v,w} {Zfz w,Xx) Hng X y} . {Zh(x,z)}”

_v—’%’_/

mey o (W) My (X) M, (X)

1ﬂx~>f2(xj

me, 5w (W)

* The complexity is now reduced to ~ K.
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The sum-product algorithm

Three update equations:

* Marginals are the product of all incoming messages from neighbour factors

= H my_e(t)

feF

* Messages from factors sum out all variables except the receiving one

me_(t1) ZZ Zf ti,t,.. 0, n)Hmti—ﬁ(t)
t t3

i>1

* Messages from variables are the product of all incoming messages except
that from the receiving factor

me¢(t) = H me; ¢ (t)

f)' EF\{f}
Messages are results of partial computations. Computations are localised.
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The full TrueSkill graph

Prior: fi(wi) = N(wy; wo, 0(2))
“Game” factor:
hg (wlg,wlg,tg) = N(tggwlg —wy,, 1)
(I4 and J4 are the players in game g)
Outcome factor:

kg(tg,yg) = 6(99 - Sign(tg))

We are interested in the marginal distributions of the skills w;.

* What shape do these distributions have?
* We need to make some approximations.
* We will also pretend the structure is a tree (ignore loops).

Quifionero-Candela & Rasmussen (CUED) Lecture 13: Message passing on Factor Graphs 12/20



Expectation Propagation in the full TrueSkill graph

Iterate

(1) Update skill marginals.

(2) Compute skill to game messages.

(3) Compute game to performance messages.
(4) Approximate performance marginals.

(5) Compute performance to game messages.

(6) Compute game to skill messages.
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Message passing for TrueSkill

=0 _ =0 _
My S, (W) = 1, my oy v =1, Vg,

N
qt(wi) = f(Wi)Hmﬁg%m(Wi) ~ N(ui, 01),
g=1

q*(wy,)

T >
Tnhg —Wj U(V\’]g )

q*(wry,) .

T 9 =
mwlgﬁhg(wlg) n'L]TI]‘)WI (VVIU)’ mwjg—ﬁtg(wlg)
c g 9

mﬁg_,tg(tg) = JJhg(tg,wlg,w]g)mfvlg_)hg(wlg)mfv]g_,hg[w]g)dwlgdw]g,

qT+1 (tg) = ApprOX(mﬁgﬁtg(tg )mkg%tg(tg ))a
qT+1(tg)

mT+l (t ) _
g )
mﬁg%tg(tg)

tg—hy

1 — +1
nlfl‘ﬁ‘,\,l(,(nm,) = JJhg(tg,ng,W]g)mfg_mg(tg)mfvlgth(wjg)dtgdW]g,

+1 _ +1
‘“}Tl” >w|q(“}1u) = thg(tg’wlg’WIg)mggﬁhg(tg)ms\)lg—)hg(wlg)dtgdwlg'
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In a little more detail

At iteration T messages m and marginals q are Gaussian, with means w, standard
deviations o, variances v = o2, precisions v = v~ and natural means \ = ry.

Step 0 Initialise incoming skill messages:

T 0 :0

‘h‘J W
=0 —
HlnJ W - O

0

.
T s (wi)

Step 1 Compute marginal skills:

T _ T
ri - TO—’_Zgrthw‘

T -
AT =M+ X M, }q (wi)

Step 2 Compute skill to game messages:

T T T

T =T —1
wi—hyg i hg—wi T i
T = AT —)\F mwiahq(wl)
wi—hg i hg—wi N
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Step 3 Game to performance messages:

T T
vhg—>tg I+ vwl —hyg +v w,‘J —hyg T t
T _ Myt ( g)
HFhy—ty = ng—mg H]g—mg

Step 4 Compute marginal performances:

Pltg) o N(UL, i, Vi, 1, )I(y —sign(t))

N(H.T+1 VT+1) _ qT+1( )
g bl
We find the parameters of q by moment matching

T

~t+1 __ T _ hg—tg

Vg - vhg—>tg (1 /\(O—:\gﬁtg’r)) qT+1(t )
e T R T Mhg—tg 9

Hg' W = Hpgoe, T thﬁtg‘y(cflg_}tg)

where we have defined ¥(x) = N(x)/®(x) and A(x) = ¥ (x)(¥(x) + x).
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Step 5 Performance to game message:

T+1 _ T“T+1 — 1T
tg—hg T 9 hg—tyg m (t )
)\T+| — )\T+1 _ AT tg—hg'™9
tg—hy g hg—tg
Step 6 Game to skill message:
For player 1 (the winner):
T+1 _ T+1 T
vthWIQ - 1+vtg~>h9 +leg~)hg T+1 ( )
T+1 T + T+1 ]nhq%wm Wi,
thﬂwm - legﬂhg utgﬁhg : ;
and for player 2 (the looser):
T+1 _ T+1 T
\)HU%M}IU =1 —‘thgahg +VWI9—>hg T+1 (“’ )
L’T+l _ T T+ lh(J —Wj, Jg
th Wiy }’Lwlgahg Htg—>hg

Go back to Step 1 with T:= 1+ 1 (or stop).
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Moments of a truncated Gaussian density (1)

Consider the truncated Gaussian density function
1 . )
plt) = Zé(y — sign(t))N(t; 1, o)

where y € {—1,1}and §(x) =1 only if x = 0 (8(x) = 0 if x # 0).
We have seen that the normalisation constant is Z, = @ (%),

We want to approximate p(t) by a Gaussian density function ¢(t) with mean and
variance equal to the first and second central moments of p(t).

This means we need to compute:

* First moment: E[t] = (t), )

2

* Second central moment: V[t] = (), (1) — (t)3 4,
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Moments of a truncated Gaussian density (2)

First moment. We take the derivative of Z; wrt. w:

azt F) J+OO 5 +oo 0 5
—_— = N(t;yu, o )dt:J —N(t;yu, o7)dt
o o Jo ok 0o Op oH
+o00 +oo
= Jo yo 2 (t —yuw)N(t;yp, o?)dt = thG’ZJ (t—yp)p(t)dt

=yZio *(t— YW pr) = UZtU_2<t>p(t) —uZio?
where (t);,(¢) is the expectation of t under p(t). We can also write:

0z 2

yp
o = 5 0(M) = YNy 0,0

Combining both expressions for aazut we obtain

N(yp; 0, %) N(¥250,1)

<t>p(t) =yu+ UZW =yu+ 0(7L’) =yu+ 0‘{’(

o o

yu
=)

where use N(yp; 0, 02) = o~ 'N(¥;0,1) and define W(z) = NZ%.
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Moments of a truncated Gaussian density (3)

Second moment. We take the second derivative of Z; wrt. p:

azzt 0 +o00 )
—_— s — a - N 5
- aHJo yo 2 (t — ywN(t; yu, 02)dt
_ yu -2 —4 2
= (D(—o_ )(—0 +o 7 (t—yw))p)
We can also write
62Zt 0 2 —2 2
ETE aTLyN(yp;O,cr ) = —0 “yuN(yp; 0, 07)

Combining both we obtain
Vt] = o2 (1 —/\(1%”))
where we define A(z) = ¥(z) (‘P(Z) + Z).
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