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Key Concepts

e Factor graphs are a class of graphical model

* A factor graph represents the product structure of a function, and contains
factor nodes and variable nodes

* We can compute marginals and conditionals efficiently by passing messages
on the factor graph, this is called the sum-product algorithm (a.k.a. belief
propagation or factor-graph propagation)

* We can apply this to the True Skill graph

* But certain messages need to be approximated

* One approximation method based on moment matching is called
Expectation Propagation (EP)
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Factor Graphs

Factor graphs are a type of probabilistic graphical model (others are directed
graphs, a.k.a. Bayesian networks, and undirected graphs, a.k.a. Markov
networks)

Factor graphs allow to represent the product structure of a function.
Example: consider the factorising probability distribution:

p(V, w, X,U,Z) = fl (vaw)fZ(W’ X)f3 (X’y)f4(xa Z)

A factor graph is a bipartite graph with two types of nodes:

e Factor node: B Variable node: O
* Edges represent the dependency of factors on variables.

fa(x.2)
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Factor Graphs

P(V, w, XaU,Z) =f1 (V,W)fz(w, X)f3 (X,U)ﬂ(X, Z)

f
O—a—0—=—_ "

fi(v,w) fo(w.x)

f4(x,2)

* What are the marginal distributions of the individual variables?
* What is p(w)?
* How do we compute conditional distributions, e.g. p(wly)?

For now, we will focus on tree-structured factor graphs.
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Factor trees: separation (1)

fa(x.y)

O—a—w—=

fi(v,w) fo(W,X)

f4(x,2)

pw) =D 3 3 > filv,w)f2(w,x)f3(x,y)fs(x,2)
v X y z

* Ifv, x, y and z take K values each, we have ~ 3K* products and ~ K* sums,
for each value of w, i.e. total O(K>).

* Multiplication is distributive: ca + ¢b = c(a + b).
The right hand side is more efficient!
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Factor trees: separation (2)

@ . @‘ . ” f5(x,y)

fi(v,w) fo(w,x)

f4(x,2)

pw) = D 3 > > filv,wiha(w,x)f3(x,y)fa(x,2)
v x y z
= [Xaew)] (X 6wty
v X y z

* In a tree, each node separates the graph into two parts.
e Grouping terms, we go from sums of products to products of sums.

* The complexity is now O(K*).

Rasmussen and Ghahramani Lecture 8 and 9: Message passing on Factor Graphs 6/22



Factor trees: separation (3)

mpy (W) M fy (W) f(x,
O—w—o—a—c_ "

fa(v.w) fa(w,x)
fa(x.2)

pw) = [ fiw) - [ 333 falwy 0306 y)falx,2)
v X Yy z

me —w (W) me, o (W)

e Sums of products becomes products of sums of all messages from
neighbouring factors to variable.
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Messages: from factors to variables (1)

f4(x,2)

me, (W) =D 3 fa2(w,x)f3(x,y)fa(x,2)
x Yy z
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Messages: from factors to variables (2)

fa(x,2)

ZZZfZ(W’X)f3(XaU)f4(X,Z)
Zfz w, x) {ZZ& x,Y)fa(x, z)}

Yy

mfl%w (W)

Mx—f, (x)

* Factors only need to sum out all their local variables.
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Messages: from variables to factors (1)

fa(X,2)

men(x) =Y Y f3(xy)fs(x,2)
y z
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Messages: from variables to factors (2)

mX*}f; (X)

Z Z f3 (Xay)f4(xa Z)
y z
= [ f0ey)- [X falx2)]
y z

Mgy x (%) M, (X)

* Variables pass on the product of all incoming messages.
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Factor graph marginalisation: summary

fa(xy)

O—a—w—n

fi(v,w) fo(w,X)

fa(x,2)

w=>>)> Z f1(v, W)tz (w, x)f3(x, y)f4(x, z)
v o x vy
- [ i) [ s [ 0] [ ]

‘11F]~>wv("v) rn.f}A,X(X) 1“(4%&(7@)

Mx—t) (x)

M, s (W)

 The complexity is reduced from O(K’) (naive implementation) to O(K?).
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The sum-product algorithm

Three update equations:

e Marginals are the product of all incoming messages from neighbour factors

= H me_¢(t)

feF,

* Messages from factors sum out all variables except the receiving one

Mg, (1) ZZ Zf ti,t,... )Hmtiﬁf(ti)
2 3

i£l

* Messages from variables are the product of all incoming messages except the
message from the receiving factor

met) = ] meodt)
ijFt\{f}

Messages are results of partial computations. Computations are localised.
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The full TrueSkill graph

Prior factors: fi(w;) = N(wy; no, 0‘(2))
“Game” factors:
hg(wr,, Wy, ,tg) = N(tgswi, —wj , 1)
(Ig and J4 are the players in game g)
Outcome factors:

kg(tg,yg) = 6(99 - Sign(tg))

We are interested in the marginal distributions of the skills w;.

* What shape do these distributions have?
* We need to make some approximations.
* We will also pretend the structure is a tree (ignore loops).
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Expectation Propagation in the full TrueSkill graph

Iterate

(1) Update skill marginals.

(2) Compute skill to game messages.

(3) Compute game to performance messages.
(4) Approximate performance marginals.

(5) Compute performance to game messages.
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Message passing for TrueSkill

=1, =1, Vg,
N
q“wi) = fwo) I ~ N, 0?),
g=1
. q*(wr,) . q*(wy,)
M, g Wr,) = e mY L (wy) = e

my, L,(tg) = JJ hg(tg, Wig, Wy Jmy, oy (Wi Jmy, oy (wy,)dwr dwy,,

qT+1 (tg)

Approx(my_ ¢ (tg)mi, st (tg)),
mT+1 (t J — w
tg—hg' "9 m’}l‘lg*}tg(tg),

1
= JJ hg(tg, Wi ,wy, )mfjehg(tg )m;[v] 5 th(WJg Jdtgdwy,,

— JJ hg(tg, Wy, Wy, )mf:ihg(tg)mfmy th(wlg Jdtgdwr, .
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In a little more detail

At iteration T messages m and marginals q are Gaussian, with means w, standard
deviations o, variances v = o2, precisions v = v~! and natural means \ = ry.

Step 0 Initialise incoming skill messages:

=0
=0
Step 1 Compute marginal skills:
T = 1o+ Zg Tlny
AT = Aot Y, }q ()

1

Step 2 Compute skill to game messages:

rT = 1T —
wi—hg T i T i
T = AT — } mwiﬂhq(wl)
wi—hg i )
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Step 3 Game to performance messages:

T T

vhq—>tq I+ vwl —hyg +v w,‘ —hyg T

T _ hg—tgltg
Hhgoty = Higon, = B, on,

Step 4 Compute marginal performances:

Pltg) o N(UL, i, Vi, 1, )I(y —sign(t))

N(H5+1,VT+1) _ qT+1( )

We find the parameters of q by moment matching

T
V! = T 1 — th;ti
Vg vhg—”g( /\( :\gﬁtg’r)) qT+1(t )
cTt+l T T Mhg—tg 9
Hg' W = Hpgoe, T thatg‘y(gflg_”g)

where we have defined ¥(x) = N(x)/®(x) and A(x) = ¥ (x)(W¥(x) + x).
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Step 5 Performance to game message:

T+1 — FTHl 4T

tg—hg — 9 hg—tyg mT+1
)\T+| _ )\T+1 AT tg—hy

tg—hg — g hg—tyg ) :

Step 6 Game to skill message:
For player 1 (the winner):

— 1+VT+1 4T

tg—hyg w]gﬂhg
T T+1
Hw]g —hy + Htgﬁhgl

and for player 2 (the looser):

— T+1 T
- 1+vt9~>hg +leg—>hg

T T+
legahg Htg—>hg

Go back to Step 1 with T:= 1+ 1 (or stop).
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Moments of a truncated Gaussian density (1)
Consider the truncated Gaussian density function

p(t) = Zié(y—sign(t))N(t; i, 02) where y € {—1,1} and §(x) =1 iff x =0.
t

- original Gaussian
—truncated o=

— renormalized & = o2
—— moment matched

probability density

0

We want to approximate p(t) by a Gaussian density function q(t) with mean and
variance equal to the first and second central moments of p(t). We need:

¢ First moment: E[t] = (t)p )
* Second central moment: V[t] = (), (1) — (t)3 4
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Moments of a truncated Gaussian density (2)

We have seen that the normalisation constant is Zy = @ (%),

First moment. We take the derivative of Z wrt. p:

azt F) J_HX) J+OO 0
— =_—| N(tyyp, o?)dt= —N(t;yp, 0?)dt
on o, (typ, 07) . (typ, 07)

+o0 +oo
= | o vN G e —yZio |-yt
=yZo *(t —YWp) = yzt0—72<t>p(t) —uZio?

where (t)p, (1) is the expectation of t under p(t). We can also write:

0Z d _,yp
—=—0 N
o~ a5 ) =Y (yw; 0,0%)
Combining both expressions for % we obtain
N(yp; 0, 0%) N(250,1)
(Op) =yn+ Uzgzil&) =ypn+ o) =yu+ G‘P(yu)

o o

where use N(yp; 0, 02) = 0 'N(¥;0, 1) and define ¥(z) = N(Z;g’]).
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Moments of a truncated Gaussian density (3)

Second moment. We take the second derivative of Z; wrt. p:

= — “2(t —yuwWN(t;

= 0(I)(—o 2 + ot —

aZZt ) J'Jroo

We can also write

62Zt 0 2 —2 2
Tuz = a—uyN(yu;O,G ) = —0 “yuN(yp; 0,07)

Combining both we obtain
Vt] = o2(1 —/\(%”))
where we define A(z) = ¥(z) (‘if(z) + Z).
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