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A really simple document model

Consider a collection of D documents with a dictionary of M unique words.

• Nd: number of (non-unique) words in document d.
• wid: i-th word in document d (wid ∈ {1 . . .M}).
• wid ∼ Cat(β): each word is drawn from a discrete

categorical distribution with parameters β
• β = [β1, . . . ,βM]>: parameters of a categorical /

multinomial distribution1 over the dictionary of M
unique words.

1It’s a categorical distribution if we observe the sequence of words in the document, it’s a
multinomial if we only observe the counts.
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A really simple document model

Modelling D documents from a dictionary of M unique words.

• Nd: number of (non-unique) words in document d.
• wid: i-th word in document d (wid ∈ {1 . . .M}).
• wid ∼ Cat(β): each word is drawn from a discrete

categorical distribution with parameters β

We can fit β by maximising the likelihood:

β̂ = argmaxβ

D∏
d=1

Mult(c1d, . . . , cMd|β,Nd)

= argmaxβ Mult(c1, . . . , cM|β,N) β̂j =
cj

N
=

cj∑M
l=1 cl

• N =
∑D
d=1Nd: total number of (non-unique) words in the collection.

• cjd =
∑Nd

i=1 I(wid = j): count of unique word j in document d.
• cj =

∑D
d=1 cjd: count of total occurrences of unique word j in the collection.
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Limitations of the really simple document model

• Document d is the result of sampling Nd words from the multinomial β.
• β estimated by maximum likelihood reflects the aggregation of all

documents.
• All documents are therefore modelled by the global word frequency

distribution.
• This generative model does not specialise.
• It possible that different documents might be about different topics.
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A mixture of multinomials model

zd ∼ Cat(θ)

wid|zd ∼ Cat(βzd
)

We want to allow for a mixture of K multinomials parametrised by β1, . . . ,βK.
Each of those multinomials corresponds to a document category.

• zd ∈ {1, . . . ,K} assigns document d to one of the K categories.
• θk = p(zd = k) is the probability any document d is assigned to category k.
• so θ = [θ1, . . . , θK] is the parameter of a multinomial over K categories.

We have introduced a new set of hidden variables zd.

• How do we fit those variables? What do we do with them?
• Are these variables interesting? Or are we only interested in θ and β?
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The Expectation Maximization (EM) algorithm

Given a set of observed (visible) variables V, a set of unobserved (hidden / latent /
missing) variables H, and model parameters θ, optimize the log likelihood:

L(θ) = logp(V |θ) = log
∫
p(H,V |θ)dH, (1)

where we have written the marginal for the visibles in terms of an integral over
the joint distribution for hidden and visible variables.

Using Jensen’s inequality for any distribution of hidden states q(H) we have:

L(θ) = log
∫
q(H)

p(H,V |θ)
q(H)

dH >
∫
q(H) log

p(H,V |θ)
q(H)

dH = F(q, θ), (2)

defining the F(q, θ) functional, which is a lower bound on the log likelihood.

In the EM algorithm, we alternately optimize F(q, θ) wrt q and θ, and we can
prove that this will never decrease L(θ).
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Jensen’s Inequality

For any concave function, such as log(x)

log(x) 

 x
1

 α x
1
 + (1−α)x

2
 x

2

 α log(x
1
) + (1−α) log(x

2
)

 log(α x
1
 + (1−α) x

2
)

For αi > 0,
∑
i αi = 1 and any {xi > 0}

log
(∑
i

αixi
)

>
∑
i

αi log(xi)

Equality if and only if αi = 1 for some i (and therefore all others are 0).
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The E and M steps of EM

The lower bound on the log likelihood:

F(q, θ) =

∫
q(H) log

p(H,V |θ)
q(H)

dH =

∫
q(H) logp(H,V |θ)dH+H(q), (3)

where H(q) = −

∫
q(H) logq(H)dH is the entropy of q. We iteratively alternate:

E step: maximize F(q, θ) wrt the distribution over hidden variables given the
parameters:

q(k)(H) := argmax
q(H)

F
(
q(H), θ(k−1)). (4)

M step: maximize F(q, θ) wrt the parameters given the hidden distribution:

θ(k) := argmax
θ

F
(
q(k)(H), θ

)
= argmax

θ

∫
q(k)(H) logp(H,V |θ)dH, (5)

which is equivalent to optimizing the expected complete-data likelihood
p(H,V |θ), since the entropy of q(H) does not depend on θ.
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EM as Coordinate Ascent in F
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The EM algorithm never decreases the log likelihood

The difference between the objective functions:

L(θ) − F(q, θ) = logp(V |θ) −
∫
q(H) log

p(H,V |θ)
q(H)

dH

= logp(V |θ) −
∫
q(H) log

p(H|V, θ)p(V |θ)
q(H)

dH

= −

∫
q(H) log

p(H|V, θ)
q(H)

dH = KL
(
q(H),p(H|V, θ)

)
,

is called the Kullback-Liebler divergence; it is non-negative and zero if and only if
q(H) = p(H|V, θ) (thus this is the E step). Although we are optimising a lower
bound, F, the likelihood L is still increased in every iteration:

L
(
θ(k−1)) =

E step
F
(
q(k), θ(k−1)) 6

M step
F
(
q(k), θ(k)

)
6

Jensen
L
(
θ(k)

)
,

where the first equality holds because of the E step, and the first inequality comes
from the M step and the final inequality from Jensen. Usually EM converges to a
local optimum of L (although there are exceptions).
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EM and Mixtures of Multinomials

In the mixture model for text, the latent variables are

zd ∈ {1, . . . ,K}, where d = 1, . . . ,D

which for each document encodes which mixture component generated it.

E-step: for each document d, set q to the posterior

qd(zd = k) ∝ p(zd = k|θ)

Nd∏
i=1

p(wi|βwik) = θkMult(c1d, . . . , cMd|βk,Nd)
def
= rkd

M-step: Maximize
K∑
k=1

qd(zd = k) logp({wid}, zd) =
∑
k

rkd log
D∏
d=1

[
Nd∏
i=1

p(wi|βwik)

]
p(zd = k)

=
∑
k

rkd

( D∑
d=1

log
M∏
j=1

β
cjd
jk + log θk

)

=
∑
k,d

rkd(

M∑
j=1

cjd logβjk + log θk)
def
= F(R, θ,β)
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EM: M step for mixture model

F(R, θ,β) =
∑
k,d

rkd(

M∑
j=1

cjd logβjk + log θk)

Need Lagrange multipliers to constrain the maximization of F and ensure proper
distributions.

θ̂k ← argmaxθk
F(R, θ,β) + λ(1 −

K∑
k′=1

θk′)

=

∑D
d=1 rkd∑K

k′=1

∑D
d=1 rk′d

=

∑D
d=1 rkd

D

β̂jk ← argmaxβjk
F(R, θ,β) +

K∑
k′=1

λk′(1 −

M∑
j′=1

βj′k′)

=

∑D
d=1 rkdcjd∑M

j′=1

∑D
d=1 rkdcj′d
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A Bayesian mixture of Multinomials model

θ ∼ Dir(α)

βk ∼ Dir(γ)

zd|θ ∼ Cat(θ)

wid|zd,β ∼ Cat(βzd
)

With the EM algorithm we have essentially estimated θ and β by maximum
likelihood. An alternative, Bayesian treatment infers the parameters starting from
priors:

• θ ∼ Dir(α) is a symmetric Dirichlet over category probabilities.
• βk ∼ Dir(γ) is a symmetric Dirichlet over unique word probabilities.

What is different?

• We no longer want to compute a point estimate of θ or β.
• We are now interested in computing the posterior distributions.
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Variational Bayesian Learning

Lower Bounding the Marginal Likelihood

Let the hidden latent variables be x, data y and the parameters θ.

Lower bound the marginal likelihood (Bayesian model evidence) using Jensen’s
inequality:

logP(y) = log
∫
dxdθ P(y, x,θ) |m

= log
∫
dxdθ Q(x,θ)

P(y, x,θ)
Q(x,θ)

>
∫
dxdθ Q(x,θ) log

P(y, x,θ)
Q(x,θ)

.

Use a simpler, factorised approximation to Q(x,θ):

logP(y) >
∫
dxdθ Qx(x)Qθ(θ) log

P(y, x,θ)
Qx(x)Qθ(θ)

= F(Qx(x),Qθ(θ), y).

Maximize this lower bound.
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Variational Bayesian Learning . . .

Maximizing this lower bound, F, leads to EM-like updates:

Q∗x(x) ∝ exp 〈logP(x,y|θ)〉Qθ(θ) E−like step

Q∗θ(θ) ∝ P(θ) exp 〈logP(x,y|θ)〉Qx(x) M−like step

Maximizing F is equivalent to minimizing KL-divergence between the
approximate posterior, Q(θ)Q(x) and the true posterior, P(θ, x|y).

logP(y) − F(Qx(x),Qθ(θ), y) =

logP(y) −
∫
dxdθ Qx(x)Qθ(θ) log

P(y, x,θ)
Qx(x)Qθ(θ)

=∫
dxdθ Qx(x)Qθ(θ) log

Qx(x)Qθ(θ)

P(x,θ|y)
= KL(Q||P)
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