4F13 Machine Learning: Coursework #2: Probabilistic Ranking

Carl Edward Rasmussen

Due: 12:00 noon, Nov 16th, 2018 online via moodle

Your answers should contain an explanation of what you do, and 2-4 central commands to achieve it (but
complete listings are unnecessary). You must also give an interpretation of what the numerical values and
graphs you provide mean — why are the results the way they are? Each question should be labelled and
answered separately and distinctly. Total combined length of answers must not exceed 1000 words;
clearly indicate the actual total number of words in your coursework. All questions carry approximately
equal weight.

In this assignment, you’ll be using the (binary) results of the 2011 ATP men’s tennis singles for 107 players
in a total of 1801 games (which these players played against each other in the 2011 season), to compute
probabilistic rankings of the skills of these players.

The match data is provided in the file tennis_data.mat, which contains two matrices: W is a cell array,
whose i’th entry is the name of player i, and G is a 1801 by 2 matrix of the played games, one row per
game: the first column is the identity of the player who won the game, and the second column contains the
identity of the player who lost. Note, that this convention means that variable yg4 (the game outcome) in
the lecture notes is always +1, and can consequently be ignored. Some rows will appear more than once
(corresponding to two players having played each other several times with the same outcome).

a) Complete the code in gibbsrank.m, by adding the lines required to sample from the conditional
distributions needed for Gibbs sampling for the ranking model discussed in the lectures. Run the
Gibbs sampler, eg for 1100 iterations. Plot some of the sampled player skills as a function of the
Gibbs iteration. Does it look as though the Gibbs sampler is able to move around the whole posterior
distribution? What are the burn-in and mixing times for the Gibbs sampler? It may be helpful to
look at the auto covariance coefficient, which can be calculated by the xcov(samples, 100, ’coeff’)
command.

b) Do inference in the model instead, by running message passing and EP using eprank.m. Explain
the concept of convergence for both the Gibbs sampler and the message passing algorithms. What
type of object are we converging to in the two cases, and how do you judge convergence, how many
iterations are necessary? Do you reach the same answers independent of initialization and pseudo
random number seeds?

c) For the message passing algorithm, compute two 4 by 4 tables of probabilities, including only the 4
top players according to the ATP ranking in the lecture notes. First table for the probabilities that
the skill of one player is higher than the other, and second table for the probability of one player
winning a match between the two. Explain the difference. The @ function is implemented in matlab
as normcdf.

d) For the Gibbs sampler, two ways of comparing skills are: 1) first compute the marginal skills for each
player, then work out the probability that player one has a better skill, vs 2) use the joint samples
from the Gibbs sampler to directly infer that probability. Examine these two alternatives on player 1
and 16. Which method is best? Using that method, derive a 4 by 4 table for the skills (not the game
outcomes) and compare to that of the message passing algorithm (from question c)).

e) Compare the rankings based on outcomes for three different cases: 1) empirical game outcome av-
erages, 2) predictions based on Gibbs sampling and 3) predictions based on the message passing
algorithm. You may find the bar plot in cw2.m useful. Explain the differences.



