4F13 Machine Learning: Coursework #2: Probabilistic Ranking

Carl Edward Rasmussen and David Scott Krueger

Due: 12:00 noon, Nov 19th, 2021 online via gradescope
Undergrad and MLMI students set your gradescope ID to be your candidate number.

Your answers should contain an explanation of what you do, and 2-4 central commands to achieve it (but
complete listings are unnecessary). You must also give an interpretation of what the numerical values and
graphs you provide mean — why are the results the way they are? Each question should be labelled and
answered separately and distinctly. Total combined length of answers must not exceed 1000 words; clearly
indicate the actual total number of words in your coursework. All questions carry approximately equal
weight. Skeleton code is provided in both matlab and python, chose whichever you prefer.

In this assignment, you’ll be using the (binary) results of the 2011 ATP men’s tennis singles for 107 players
in a total of 1801 games (which these players played against each other in the 2011 season), to compute
probabilistic rankings of the skills of these players.

The match data is provided in the file tennis_data.mat, which contains two matrices: W, whose i’th entry is
the name of player i, and G is a 1801 by 2 matrix of the played games, one row per game: the first column is
the identity of the player who won the game, and the second column contains the identity of the player who
lost. Note, that this convention means that variable y4 (the game outcome) in the lecture notes is always
+1, and can consequently be ignored. Some rows will appear more than once (corresponding to two players
having played each other several times with the same outcome).

a) Complete the code in gibbsrank, by adding the lines required to sample from the conditional distri-
butions needed for Gibbs sampling for the ranking model discussed in the lectures. Run the Gibbs
sampler, eg for 1100 iterations. Plot some of the sampled player skills as a function of the Gibbs
iteration. What are the burn in and auto-correlation times and how long would you run the Gibbs
sampler to get reliable results? Explain why. It may be helpful to look at the auto covariance coeffi-
cient, which can be calculated by the xcov(samples, 100, ’coeff’) matlab command, or the python
lines provided.

b) Do inference in the model instead, by running message passing and EP using eprank. Explain the
concept of convergence for both the Gibbs sampler and the message passing algorithms. What type of
object are we converging to in the two cases, and how do you judge convergence, how many iterations
are necessary?

c) For the message passing algorithm, compute two 4 by 4 tables of probabilities, including only the 4
top players according to the ATP ranking in the lecture notes. First table for the probabilities that the
skill of one player is higher than the other, and second table for the probability of one player winning a
match between the two. Explain the difference. The @ function is implemented as normcdf in matlab
and scipy.stats.norm.cdf in python.

d) For the Gibbs sampler, compare the skills of Nadal and Djokovic in three different ways: 1) based
on approximating their marginal skills by Gaussians, 2) based on approximating their joint skills by
a Gaussian or 3) directly from the samples. Which method is best? Using that method, derive a 4 by
4 table for the skills (not the game outcomes) and compare to that of the message passing algorithm
(from question c)).

e) Compare the rankings of players using predicted outcomes for three different methods of inference: 1)
empirical game outcome averages, 2) predictions based on Gibbs sampling and 3) predictions based
on the message passing algorithm. You may find the bar plot in cw2.m useful. Explain the differences.



