Introduction to Ranking

Carl Edward Rasmussen

October 28th, 2016

Key concepts

- ranking systems have many applications
- however, many common ranking algorithms are poor
- they rely on vast numbers of arbitrary conventions
- they have numerous deficiencies leading to poor performance
- example domain: tennis
- How would we define a sensible ranking procedure?
- appendix: some detailed derivations

Motivation for ranking

000

Competition is central to our lives. It is an innate biological trait, and the driving principle of many sports.
In the Ancient Olympics (700 BC), the winners of the events were admired and immortalised in poems and statues.
Today in pretty much every sport there are player or team rankings. (Football leagues, Poker tournament rankings, etc).
We are going to focus on one example: tennis players, in men singles games. We are going to keep in mind the goal of answering the following question: What is the probability that player 1 defeats player 2?

The ATP ranking system for tennis players

Men Singles ranking as of 28 December 2011:

Rank, Name \& Nationality	Points	Tournaments Played
1 Djokovic, Novak (SRB)	13,675	19
2 Nadal, Rafael (ESP)	9,575	20
3 Federer, Roger (SUI)	8,170	19
4 Murray, Andy (GBR)	7,380	19
5 Ferrer, David (ESP)	4,880	23
6 Tsonga, Jo-Wilfried (FRA)	4,335	25
7 Berdych, Tomas (CZE)	3,700	24
8 Fish, Mardy (USA)	2,965	24
9 Tipsarevic, Janko (SRB)	2,595	28
10 Almagro, Nicolas (ESP)	2,380	27
11 Del Potro, Juan Martin (ARG)	2,315	22
12 Simon, Gilles (FRA)	2,165	28
13 Soderling, Robin (SWE)	2,120	22
14 Roddick, Andy (USA)	1,940	20
15 Monfils, Gael (FRA)	1,935	23
16 Dolgopolov, Alexandr (UKR)	1,925	30
17 Wawrinka, Stanislas (SUI)	1,820	23
18 Isner, John (USA)	1,800	25
19 Gasquet, Richard (FRA)	1,765	21
20 Lopez, Feliciano (ESP)	1,755	28

ATP: Association of Tennis Professionals (www. atpworldtour .com)

The ATP ranking system explained (to some degree)

- Sum of points from best 18 results of the past 52 weeks.
- Mandatory events: 4 Grand Slams, and 8 Masters 1000 Series events.
- Best 6 results from International Events (4 of these must be 500 events).

Points breakdown for all tournament categories (2012):

	W	F	SF	QF	R 16	R 32	R 64	R 128	Q
Grand Slams	2000	1200	720	360	180	90	45	10	25
Barclays ATP World Tour Finals	$* 1500$								
ATP World Tour Masters 1000	1000	600	360	180	90	45	$10(25)$	(10)	$(1) 25$
ATP 500	500	300	180	90	45	(20)			$(2) 20$
ATP 250	250	150	90	45	20	(5)			$(3) 12$
Challenger 125,000 +H	125	75	45	25	10				5
Challenger 125,000	110	65	40	20	9				5
Challenger 100,000	100	60	35	18	8				5
Challenger 75,000	90	55	33	17	8				5
Challenger 50,000	80	48	29	15	7				3
Challenger 35,000 +H	80	48	29	15	6				3
Futures** $15,000+\mathrm{H}$	35	20	10	4	1				
Futures** 15,000	27	15	8	3	1				
Futures** 10,000	18	10	6	2	1				

The Grand Slams are the Australian Open, the French Open, Wimbledon, and the US Open.
The Masters 1000 Tournaments are: Cincinnati, Indian Wells, Madrid, Miami, Monte-Carlo, Paris, Rome, Shanghai, and Toronto.
The Masters 500 Tournaments are: Acapulco, Barcelona, Basel, Beijing, Dubai, Hamburg, Memphis, Rotterdam, Tokyo, Valencia and Washington.
The Masters 250 Tournaments are: Atlanta, Auckland, Bangkok, Bastad, Belgrade, Brisbane, Bucharest, Buenos Aires, Casablanca, Chennai, Delray Beach, Doha, Eastbourne, Estoril, Gstaad, Halle, Houston, Kitzbuhel, Kuala Lumpur, London, Los Angeles, Marseille, Metz, Montpellier, Moscow, Munich, Newport, Nice, Sao Paulo, San Jose, 's-Hertogenbosch, St. Petersburg, Stockholm, Stuttgart, Sydney, Umag, Vienna, Vina del Mar, Winston-Salem, Zagreb and Dusseldorf.

A laundry list of objections and open questions

Rank, Name \& Nationality	Points
1 Djokovic, Novak (SRB)	13,675
2 Nadal, Rafael (ESP)	9,575
3 Federer, Roger (SUI)	8,170
4 Murray, Andy (GBR)	7,380

Some questions:

- Is a player ranked higher than another more likely to win?
- What is the probability that Nadal defeats Djokovic?
- How much would you (rationally) bet on Nadal?

And some concerns:

- The points system ignores who you played against.
- 6 out of the 18 tournaments don't need to be common to two players. Other examples: Premier League. Meaningless intermediate results throughout the season: doesn't say whom you played and whom you didn't!

Towards a probabilistic ranking system

What we really want is to infer is a player's skill.

- Skills must be comparable: a player of higher skill is more likely to win.
- We want to do probabilistic inference of players' skills.
- We want to be able to compute the probability of a game outcome. A generative model for game outcomes:
(1) Take two tennis players with known skills $\left(w_{i} \in \mathbb{R}\right)$
- Player 1 with skill w_{1}.
- Player 2 with skill w_{2}.
(2) Compute the difference between the skills of Player 1 and Player 2:

$$
\mathrm{s}=\mathfrak{w}_{1}-\mathfrak{w}_{2}
$$

(3) Add noise $(\mathrm{n} \sim \mathcal{N}(0,1)$) to account for performance inconsistency:

$$
\mathrm{t}=\mathrm{s}+\mathrm{n}
$$

(4) The game outcome is given by $y=\operatorname{sign}(t)$

- $y=+1$ means Player 1 wins.
- $y=-1$ means Player 2 wins.

The likelihood in a picture

Player 2 wins

Player 1 wins

So, what is the probability that player 1 wins, given the skills $p\left(y=1 \mid w_{1}, w_{2}\right)$?

$$
\begin{aligned}
& p\left(y=1 \mid w_{1}, w_{2}\right)=p\left(t>0 \mid w_{1}, w_{2}\right)=\Phi\left(w_{1}-w_{2}\right), \\
& \text { since } \Phi(x)=\int_{-\infty}^{x} \mathcal{N}(z ; 0,1) d z=\int_{0}^{\infty} \mathcal{N}(z ; x, 1) \mathrm{d} z .
\end{aligned}
$$

The Likelihood

$$
\begin{aligned}
\mathrm{t} & =w_{1}-w_{2}+\mathrm{n}, \quad \mathrm{y}=\operatorname{sign}(\mathrm{t}) \\
p\left(\mathrm{y} \mid w_{1}, w_{2}\right) & =\iint p(y \mid t) p(\mathrm{t} \mid \mathrm{s}) p\left(s \mid w_{1}, w_{2}\right) \mathrm{dsdt}=\int p(y \mid t) p\left(\mathrm{t} \mid w_{1}, w_{2}\right) \mathrm{dt} \\
& =\Phi\left(\mathrm{y}\left(w_{1}-w_{2}\right)\right),
\end{aligned}
$$

where we have the little compactifying trick for binary variables $y= \pm 1$

$$
p(y=1 \mid z)=\Phi(z) \Longrightarrow p(y=-1 \mid z)=1-\Phi(z)=\Phi(-z) \Longrightarrow p(y \mid z)=\Phi(y z) .
$$

TrueSkill ${ }^{\mathrm{TM}}$, a probabilistic skill rating system

- w_{1} and w_{2} are the skills of Players 1 and 2. We treat them in a Bayesian way:

$$
\text { prior } \quad p\left(w_{i}\right)=\mathcal{N}\left(w_{i} \mid \mu_{i}, \sigma_{i}^{2}\right)
$$

- $s=w_{1}-w_{2}$ is the skill difference.
- $t \sim \mathcal{N}(t \mid s, 1)$ is the performance difference.
- $\mathrm{y}=\operatorname{sign}(\mathrm{t})$ is the game outcome.
- the likelihood is the probability of outcome given skills:

$$
p\left(y \mid w_{1}, w_{2}\right)=\iint p(y \mid t) p(t \mid s) p\left(s \mid w_{1}, w_{2}\right) d s d t
$$

- The posterior over skills given the game outcome is:

$$
p\left(w_{1}, w_{2} \mid y\right)=\frac{p\left(w_{1}\right) p\left(w_{2}\right) p\left(y \mid w_{1}, w_{2}\right)}{\iint p\left(w_{1}\right) p\left(w_{2}\right) p\left(y \mid w_{1}, w_{2}\right) d w_{1} d w_{2}}
$$

An intractable posterior

The joint posterior distribution over skills does not have a closed form:

$$
p\left(w_{1}, w_{2} \mid y\right)=\frac{\mathcal{N}\left(w_{1} ; \mu_{1}, \sigma_{1}^{2}\right) \mathcal{N}\left(w_{2} ; \mu_{2}, \sigma_{2}^{2}\right) \Phi\left(y\left(w_{1}-w_{2}\right)\right)}{\iint \mathcal{N}\left(w_{1} ; \mu_{1}, \sigma_{1}^{2}\right) \mathcal{N}\left(w_{2} ; \mu_{2}, \sigma_{2}^{2}\right) \Phi\left(y\left(w_{1}-w_{2}\right)\right) \mathrm{d} w_{1} \mathrm{~d} w_{2}}
$$

- w_{1} and w_{2} become correlated, the posterior does not factorise.
- The posterior is no longer a Gaussian density function.

The normalising constant of the posterior, the prior over y does have closed form:

$$
\mathfrak{p}(\mathrm{y})=\iint \mathcal{N}\left(w_{1} ; \mu_{1}, \sigma_{1}^{2}\right) \mathcal{N}\left(w_{2} ; \mu_{2}, \sigma_{2}^{2}\right) \Phi\left(\mathrm{y}\left(w_{1}-w_{2}\right)\right) \mathrm{d} w_{1} \mathrm{~d} w_{2}=\Phi\left(\frac{\mathrm{y}\left(\mu_{1}-\mu_{2}\right)}{\sqrt{1+\sigma_{1}^{2}+\sigma_{2}^{2}}}\right)
$$

This is a smoother version of the likelihood $p\left(y \mid w_{1}, w_{2}\right)$.
Can you explain why?

Joint posterior after several games

Each player playes against multiple opponents, possibly multiple times; what does the joint posterior look like?

The combined posterior is difficult to picture.
How do we do inference with an ugly posterior like that? How do we predict the outcome of a match?

Appendix: The likelihood in detail

$$
\begin{aligned}
& p\left(y \mid w_{1}, w_{2}\right)=\iint p(y \mid t) p(t \mid s) p\left(s \mid w_{1}, w_{2}\right) d s d t=\int p(y \mid t) p\left(t \mid w_{1}, w_{2}\right) d t \\
&=\int_{-\infty}^{+\infty} \delta(y-\operatorname{sign}(t)) \mathcal{N}\left(t \mid w_{1}-w_{2}, 1\right) \mathrm{dt} \\
&=\int_{-\infty}^{+\infty} \delta(1-\operatorname{sign}(y t)) \mathcal{N}\left(y t \mid y\left(w_{1}-w_{2}\right), 1\right) \mathrm{dt} \\
&=y \int_{-y \infty}^{+y \infty} \delta(1-\operatorname{sign}(z)) \mathcal{N}\left(z \mid y\left(w_{1}-w_{2}\right), 1\right) \mathrm{d} z \quad \\
&=\int_{-\infty}^{+\infty} \delta(1-\operatorname{sign}(z)) \mathcal{N}\left(z \mid y\left(w_{1}-w_{2}\right), 1\right) \mathrm{d} z \\
&\left.=\int_{0}^{+\infty} \mathcal{N}\left(z \mid y\left(w_{1}-w_{2}\right), 1\right) \mathrm{d} z=\int_{-\infty}^{y\left(w_{1}-w_{2}\right)} \mathcal{N}(x \mid 0,1) \mathrm{d} x \quad \quad \text { (use } x \equiv y\left(w_{1}-w_{2}\right)-z\right) \\
&=\Phi\left(y\left(w_{1}-w_{2}\right)\right)
\end{aligned}
$$

$\Phi(a)$ is the Gaussian cumulative distribution function, or 'probit' function.

