Latent Dirichlet Allocation for Topic Modeling

Carl Edward Rasmussen

November 18th, 2016

Carl Edward Rasmussen Latent Dirichlet Allocation for Topic Modeling November 18th, 2016 1/18



Limitations of the mixture of categoricals model
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A generative view of the mixture of categoricals model

©® Draw a distribution © over K topics from a Dirichlet(c).

® For each topic k, draw a distribution 3, over words from a Dirichlet(y).

©® For each document d, draw a topic z4 from a Categorical(0)

© For each document d, draw N4 words wy, 4 from a Categorical(f3,,)
Limitations:

e All words in each document are drawn from one specific topic distribution.

e This works if each document is exclusively about one topic, but if some
documents span more than one topic, then “blurred” topics must be learnt.
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NIPS dataset: LDA topics 1 to 7 out of 20.
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NIPS dataset: LDA topics 8 to 14 out of 20.
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NIPS dataset: LDA topics 15 to 20 out of 20.
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Carl Edward Rasmussen

Latent Dirichlet Allocation (LDA)

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many cenes does an/organism need to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed forllife.
One research team, using computer analy

ses to compare known genomes, concluded
that today’sforganisis can be sustained with
just 250 genes, and that the earliest life forms

required a mere 128 eenes. The S

other researcher mapped genes

harasite and esti- -/

inasimple
/ Haemophilus
9

mated that ‘mx this organism, |
800 genes are plenty todo the |
job—but that anything short
ot 100 wouldn't be enough.
Although the numbers don't
match precisely, those predictions

1703 genes

* Genome Mapping and Sequenc-
ing. Cold Spring Harbor, New York,
May 8 to 12

SCIENCE = VOL. 2 ¢ 14 MAY 1996
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“are not all that apart,” especially in
comparison to the 73,000 genes in the hu
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
SO0 number. But coming up with a consen-
sus answer may be more than just a cenetic

numbers game, I‘wll'fl{“l,l['l\' as more Jnkl
more "\'l]““]\"‘ are LHlll}‘ll‘[Cl\' map
sequenced, "It may be a way of organizing
any newly sequenced genome,”

Arcady Mushegian, a compurational mo-

WL‘LI a I]LI

k.\PLlLI‘l.\

> lecular biologist at the National Center

7Y
* for Biotechnology Information (NCBI)
)

i in Bethesda, Maryland. Comparing an

T /‘/“'\
) Minimal 7
dones | | gene set | (

6
| 250 genes | \genes;

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes

ADAPTED FROM NCBI

November 18th, 2016

6/18



Generative model for LDA

Topics

Documents

Topic proportions and
assignments

gene 9.04

dna 8.02
genetic

0.01

Seeking Life’s Bare (Genetic) Necessities

ather researcher mapped genes
in a simple parasite and esti- 7/
mated that for this org:
800 senes are plenty to do the

* Genome Mapping and Sequenc-
ing, Cold Spring Harbaor, New York
May 810 12
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my newly o
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Stripping down. Compuler anaysis yields an esti-
mate of the minimum modem and ancient gencmes.

272 . 24 MAY 1996

* Each topic is a distribution over words.
e Each document is a mixture of corpus-wide topics.
e Each word is drawn from one of those topics.
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The posterior distribution

: Topic proportions and
Topics Documents assignments

Seeking Life’s Bare (Genetic) Necessities

COLD SP

PRING HARBOR, NEW YORK—  “are not all that far a
e n t 7

espectally in
to the 7 il

nisms can be sustained with
hat the earliest Life forms
T _

L L,
L * Genome Mapping and Sequenc- - g
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e In reality, we only observe the documents.
¢ The other structure are hidden variables.

from David Blei
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The posterior distribution

: Topic proportions and
Topics Documents pic prop
assignments
Seeking Life’s Bare (Genetic) Necessities
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/
\/
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\_//_‘ * Genome Mapping and Sequenc- i
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May 8to 12 mate of the minimum moderm and ancient genames.
|
|
f

e Our goal is to infer the hidden variables.
* This means computing their distribution conditioned on the documents
p(topics, proportions, assignmentsldocuments)
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The LDA graphical model

Per document Observed
topic proportions word
Proportions Per word topic ) Topic
parameter assignment Topics  parameter
i=1:N k=1:K
d=1:D

* Nodes are random variables; edges indicate dependence.
* Shaded nodes indicate observed variables.
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The difference between mixture of categoricals and
LDA
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A generative view of LDA
® For each document d draw a distribution 04 over topics from a Dirichlet(x).
® For each topic k draw a distribution B over words from a Dirichlet(y).
©® Draw a topic zn 4 for the n-th word in document d from a Categorical(64)
©® Draw word w4 from a Categorical(p, )

Differences with the mixture of categoricals model:
* In LDA, every word in a document can be drawn from a different topic,
* and every document has its own distribution over topics 04.
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The LDA inference problem
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“Always write down the probability of everything.” (Steve Gull)

P(B1.x>01:05{znaks {Wnally, o)

K D Ny
=[Ir®B) I] |p(0alx) H (znal®a)p(WnalB1.x>2zna)]
k=1 n=1

Learning involves computing the posterior over the parameters, 31.x and 01.p
given the words {w;, 4}, but this requires the we marginalize out the latent {z,, 4}.

How many configurations are there?

This computation is intractable.
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The intractability of LDA

The evidence (normalising constant of the posterior):

K Ng

pllwia)) = | j S TTTT LT plznal0alp(@alapswnalBracs zna)p(Bely)dBrdes

zig d=1k=1n=1

We need to average over all possible set of values of all z,, 4. If every document
had N words, this means KN configurations per document.
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Gibbs to the Rescue

The posterior is intractable because there are too many possible latent {z,, 4}

Sigh, ... if only we knew the {z,,4} ...?

Which might remind us of Gibbs sampling ... could we sample each latent
variable given the values of the other ones?
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Refresher on Beta and Dirichlet

If we had a p(nt) = Beta(«, ) prior on a binomial probability 7t, and observed k
successes and n — k failures, then the posterior probability

p(7mn, k) = Beta(ox + k, f +n — k),
and the predictive probability of success at the next experiment

o+ k

k) = Jk)dn =E[nn,k] = — .
p(success|n, k) Jp(successlﬂ)p(ﬂln )d7 [7tn, k] g —

Analogously, if we had a prior p(7) = Dir(«y,. .., «x) on the parameter 7t of a
multinomial, and cy,.. ., cy observed counts of each value, the posterior is

p(mey, ..., cx) = Dir(xg +c1,..., ok + Ck),
and the predictive probability that the next item takes value j is:

&5 + ¢4

P(j|C1,...,ck):Jp(jm)p(mch...,ck)dn:E[mcl,...,ck] = m
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Collapsed Gibbs sampler for LDA

In the LDA model, we can integrate out the parameters of the multinomial
distributions, 84 and f, and just keep the latent counts z,,4. Sampling these z,, 4
in turn is called a collapsed Gibbs sampler.

Recall, that the predictive distribution for a symmetric Dirichlet is given by

ot
N ZjO(Jer'

Now, for Gibbs sampling, we need the predictive distribution for a single z,,q
given all other z,,4, ie, given all the counts except for the word n in document d.
The Gibbs update contains two parts, one from the topic distribution and one
from the word distribution:

Pi

k ~k
“+Cfnd Y+ C*Wnd

p(an = kl{zfndh {W}’ Y> OC) X K M

Dlatd g D v+,

j=1 m=1

where ¢, is the count of words from document d, excluding n, assigned to
topic k, and ¢*, is the number of times word m was generated from topic k
(again, excluding the observation nd).
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Derivation of the collapsed Gibbs sampler

é

The probability of everything:

K

D
p(Bl:K!eliDa{an}a{wT\d}h/3 o‘) = Hp(ﬁkh/) H P(9d|0¢) [p(an|ed)p(Wnd|BlzK7an)}

k=1 d=1 n=1
What we want for Gibbs sampling is:

P(an = kHand}a{W}, Y, O‘)
X P(zna = kl{z—nah &) pPWndlzna =k, {W_nal,{z—nah7v)

x+ck 4 y+eE<,
- K M
Z oc+c (y+¢&*,.)
j=1 m=1

where ¢, def Z I(zn/q =j) and &, def Z T(Wnrar =m) L(znrgr = k).
n’#n (n’,d”)#(n,d)

Carl Edward Rasmussen Latent Dirichlet Allocation for Topic Modeling November 18th, 2016 17/18



Per word Perplexity

In text modeling, performance is often given in terms of per word perplexity. The
perplexity for a document is given by

exp(—t/n),

where { is the log joint probability over the words in the document, and 1 is the
number of words. Note, that the average is done in the log space.

A perplexity of g corresponds to the uncertainty associated with a die with g
sides, which generates each new word. Example:

1111

pwi, wa, w3, wy) = 6666 (1)
1 ( )—11 (1)4——1 6 (2)
nogpwla""w4 _40g6 - og

perplexity:exp(—ilogp(wl,...,wﬂ) =6 (3)
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