How do we fit this dataset?

- Dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^N$ of N pairs of inputs x_i and targets y_i. This data can for example be measurements in an experiment.

- Goal: predict target y_* associated to any arbitrary input x_*. This is known as a regression task in machine learning.

- Note: Here the inputs are scalars, we have a single input feature. Inputs to regression tasks are often vectors of multiple input features.
Model of the data

- In order to predict at a new x_\ast we need to postulate a model of the data. We will estimate y_\ast with $f(x_\ast)$.

- But what is $f(x)$? Example: a polynomial

$$f_w(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \ldots + w_M x^M$$

The w_j are the weights of the polynomial, the parameters of the model.
Model of the data. Example: polynomials of degree M
• Should we choose a polynomial?
• What degree should we choose for the polynomial?
• For a given degree, how do we choose the weights?
• For now, let find the single “best” polynomial: degree and weights.
Fitting model parameters: the least squares approach

- Idea: measure the quality of the fit to the training data.
- For each training point, measure the squared error $e_i^2 = (y_i - f(x_i))^2$.
- Find the parameters that minimise the sum of squared errors:

$$E(w) = \sum_{i=1}^{N} e_i^2$$

$f_w(x)$ is a function of the parameter vector $w = [w_0, w_1, \ldots, w_M]^\top$.
Least squares in detail. (1) Notation

Some notation: training targets \mathbf{y}, predictions \mathbf{f} and errors \mathbf{e}.

- $\mathbf{y} = [y_1, \ldots, y_N]^\top$ is a vector that stacks the N training targets.
- $\mathbf{f} = [f_w(x_1), \ldots, f_w(x_N)]^\top$ stacks $f_w(x)$ evaluated at the N training inputs.
- $\mathbf{e} = \mathbf{y} - \mathbf{f}$ is the vector of training prediction errors.

The sum of squared errors is therefore given by

$$E(\mathbf{w}) = \| \mathbf{e} \|^2 = \mathbf{e}^\top \mathbf{e} = (\mathbf{y} - \mathbf{f})^\top (\mathbf{y} - \mathbf{f})$$

More notation: weights \mathbf{w}, basis functions $\phi_j(x)$ and matrix Φ.

- $\mathbf{w} = [w_0, w_1, \ldots, w_M]^\top$ stacks the $M+1$ model weights.
- $\phi_j(x) = x^j$ is a basis function of our linear in the parameters model.

$$f_w(x) = w_0 1 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=0}^{M} w_j \phi_j(x)$$

- $\Phi_{ij} = \phi_j(x_i)$ allows us to write $\mathbf{f} = \Phi \mathbf{w}$.
Least squares in detail. (2) Solution

A Gradient View. The sum of squared errors is a convex function of \(\mathbf{w} \):

\[
E(\mathbf{w}) = (\mathbf{y} - \mathbf{f})^\top (\mathbf{y} - \mathbf{f}) = (\mathbf{y} - \Phi \mathbf{w})^\top (\mathbf{y} - \Phi \mathbf{w})
\]

The gradient with respect to the weights is:

\[
\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = -2 \Phi^\top (\mathbf{y} - \Phi \mathbf{w}) = 2\Phi^\top \Phi \mathbf{w} - 2\Phi^\top \mathbf{y}.
\]

The weight vector \(\hat{\mathbf{w}} \) that sets the gradient to zero minimises \(E(\mathbf{w}) \):

\[
\hat{\mathbf{w}} = (\Phi^\top \Phi)^{-1} \Phi^\top \mathbf{y}
\]

A Geometrical View. This is the matrix form of the Normal equations.

- The vector of training targets \(\mathbf{y} \) lives in an \(N \)-dimensional vector space.
- The vector of training predictions \(\mathbf{f} \) lives in the same space, but it is constrained to being generated by the \(M + 1 \) columns of matrix \(\Phi \).
- The error vector \(\mathbf{e} \) is minimal if it is orthogonal to all columns of \(\Phi \):

\[
\Phi^\top \mathbf{e} = 0 \quad \iff \quad \Phi^\top (\mathbf{y} - \Phi \mathbf{w}) = 0
\]
Least squares fit for polynomials of degree 0 to 17

Carl Edward Rasmussen

Linear in the parameters regression

October 9th, 2023
• Ok, so have we solved the problem?
• What do we think y_* is for $x_* = -0.25$? And for $x_* = 2$?
• If M is large enough, we can find a model that fits the data
• All the models in the figure are polynomials of degree 17 (18 weights).
• All perfectly fit the 17 training points, plus any desired y_* at $x_* = -0.25$.
• We have not solved the problem. Key missing ingredient: assumptions!
Some open questions

• Do we think that all models are equally probable... before we see any data?
 What does the probability of a model even mean?

• Do we need to choose a single “best” model or can we consider several?
 We need a framework to answer such questions.

• Perhaps our training targets are contaminated with noise. What to do?
 This question is a bit easier, we will start here.