Probability fundamentals

Carl Edward Rasmussen

October 10th, 2023
Key Concepts

- probability basics
 - Example: Medical diagnosis
 - joint, conditional and marginal probabilities
 - the two rules of probability: sum and product rules
 - Bayes rule

- Bayesian inference and prediction with finite regression models
 - likelihood and prior
 - posterior and predictive distribution

- the marginal likelihood
 - Bayesian model selection
 - Example: How Bayes avoids overfitting
Breast cancer facts:

- 1% of scanned women have breast cancer
- 80% of women with breast cancer get positive mammography scans
- 9.6% of women without breast cancer also get positive mammography scans

Question: A woman gets a scan, and it is positive; what is the probability that she has breast cancer?

1. less than 1%
2. around 10%
3. around 90%
4. more than 99%
Breast cancer facts:
- 1% of scanned women have breast cancer
- 80% of women with breast cancer get positive mammography scans
- 9.6% of women without breast cancer also get positive mammography scans

Define: \(C\) = presence of breast cancer; \(\bar{C}\) = no breast cancer.
\(M\) = scan is positive; \(\bar{M}\) = scan is negative.

The probability of cancer for scanned women is \(p(C) = 1\%\)
If there is cancer, the probability of a positive mammography is \(p(M|C) = 80\%\)
If there is no cancer, we still have \(p(M|\bar{C}) = 9.6\%\)

The question is what is \(p(C|M)\)?
Medical inference

What is $p(C|M)$?
Consider 10000 subjects of screening
- $p(C) = 1\%$, therefore 100 of them have cancer, of which
 - $p(M|C) = 80\%$, therefore 80 get a positive mammography
 - 20 get a negative mammography
- $p(\bar{C}) = 99\%$, therefore 9900 of them do not have cancer, of which
 - $p(M|\bar{C}) = 9.6\%$, therefore 950 get a positive mammography
 - 8950 get a negative mammography

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>\bar{M}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>\bar{C}</td>
<td>950</td>
<td>8950</td>
</tr>
</tbody>
</table>
What is $p(C|M)$?

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>\bar{M}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>\bar{C}</td>
<td>950</td>
<td>8950</td>
</tr>
</tbody>
</table>

$p(C|M)$ is obtained as the proportion of all positive mammographies for which there actually is breast cancer

$$p(C|M) = \frac{p(C, M)}{p(C, M) + p(\bar{C}, M)} = \frac{p(M|C)p(C)}{p(M)} = \frac{80}{80 + 950} \approx 7.8\%$$

This is an example of Bayes’ rule:

$$p(A|B)p(B) = p(A, B) = p(B|A)p(A),$$

which is just a consequence of the definition of *conditional probability*

$$p(A|B) = \frac{p(A, B)}{p(B)}, \quad (\text{where } p(B) \neq 0).$$
Astonishingly, the rich theory of probability can be derived using just two rules: The \textit{sum rule} states that

\[
p(A) = \sum_B p(A, B), \quad \text{or} \quad p(A) = \int_B p(A, B) dB,
\]

for discrete and continuous variables. Sometimes called \textit{marginalization}. The \textit{product rule} states that

\[
p(A, B) = p(A|B)p(B).
\]

It follows directly from the definition of \textit{conditional probability}, and leads directly to Bayes’ rule

\[
p(A|B)p(B) = p(A, B) = p(B|A)p(A) \Rightarrow p(A|B) = \frac{p(B|A)p(A)}{p(B)}.
\]

Special case:
if A and B are \textit{independent}, \(p(A|B) = p(A)\), and thus \(p(A, B) = p(A)p(B)\).