
4F13 Probabilistic Machine Learning: Coursework #1: Gaussian Processes

Carl Edward Rasmussen and Hong Ge

Due (for non-MLMI students): 12:00 noon, Friday Nov 8th, 2024, online via moodle

Your answers should contain an explanation of what you do, and max 2-4 central commands to
achieve it (but complete listings are unnecessary and discouraged). You must give an interpretation
of what the numerical values and graphs you provide mean – why are the results the way they are,
and what are the consequences? Explain your reasoning. Each question should be labelled
and answered separately and distinctly. Total combined length of answers must not exceed 5
sides of a4 (plus cover page), minimum 11pt font, 1 inch margins.

You need the Gaussian Processes for Machine Learning (GPML) toolbox (version 4.2) for mat-
lab and octave. Get the toolbox and walk through the documentation concerning regression from
the Gaussian Process Web site at www.gaussianprocess.org/gpml/code Note, that sometimes
hyperparameters are encoded using their logarithms (to avoid having to deal with constrained op-
timization for positive parameters), but you will want to report them in their natural domain. All
logs are natural (ie, base e). All questions carry approximately equal weight.

a) Load data from cw1a.mat. Train a GP with a squared exponential covariance function,
covSEiso. Start the log hyper-parameters at hyp.cov = [-1 0]; hyp.lik = 0; and mini-
mize the negative log marginal likelihood. Show the 95% predictive error bars. Explain the
values of the optimized hyperparameters and the shape of the predictive error bars.

b) How can you find out whether the hyper parameter optimum is unique, or whether there
maybe other local optima? If there are local optima, find some, and explain what the model
isdoing in each case. Which fit is best, and why? Quantify how confident are you about
thisand why?

c) Train instead a GP with a periodic covariance function, covPeriodic. Show the fit. Compare
the behaviour of the error-bars, with a). Do you think the data generating mechanism (apart
from the noise) was strictly periodic1? Carefully discuss the evidence for or against periodicity.

d) Generate random (essentially) noise free functions evaluated at x = linspace(-5,5,200)’;
from a GP with the following covariance function: {@covProd, {@covPeriodic, @covSEiso}},
with covariance log hyperparameters hyp.cov = [-0.5 0 0 2 0]. In order to apply the
Cholesky decomposition to the covariance matrix, you may have to add a small diagonal
matrix, for example 1e-6*eye(200), why? Plot some sample functions. Carefully explain the
relationship between the properties of those random functions and the form of the covariance
function.

e) Load cw1e.mat. This data has 2-D input and scalar output. Visualise the data, for example
using mesh(reshape(x(:,1),11,11),reshape(x(:,2),11,11),reshape(y,11,11)); Rotate
the data, to get a good feel for it. Compare two GP models of the data, one with covSEard
covariance and the other with {@covSum, {@covSEard, @covSEard}} covariance. For the
second model be sure to break symmetry with the initial hyperparameters (eg by using hyp.cov
= 0.1*randn(6,1);).

Compare the models: give a careful quantitative interpretation of the relationship between
data fit, model complexity and marginal likelihood for each of the two models; which model
is best and why, explain your reasoning.

1By strictly periodic, is meant a function where there exists a p such that f(x) = f(x + np) for integer n and all
x, not just a function which “goes up and down”.


