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Outline

e why?

e defining Gaussian Processes

® learning and inference (1 slide)

e practice: hyperparameters

e Occam’s Razor and the marginal likelihood
® covariance functions

e conclusions
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Gaussian Processes: what and why?

Gaussian Processes (GPs) marry two of the most ubiqutous and useful concepts in
science, engineering and modelling: probability theory and functions.

GPs are probability distributions over functions.

® GPs are the only practical class of probability distributions over functions
e GPs fit naturally within the Bayesian inference.
e The GP framework is principled, practical and powerful.
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Distribution over Functions

Key idea: use a separate random variable to represent that value of the function
f(x) for each possible input x.

I will use plots like this, to illustrate (marginal) distributions over functions:
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The function value at a specific input is characterised by a Gaussian.

Rasmussen Gaussian Processes October 23th, 2023 4127



The Gaussian Distribution

The univariate Gaussian distribution is given by

1
plal, 0®) = N, 0%) = (2m0%) 2 exp (= 55 (x —w)?)
The multivariate Gaussian distribution for D-dimensional vectors is given by
p(xlw,£) = N(, £) = 2m) P2Z 2 exp (— 3 (x—p) 2 (x — )

where p is the mean vector and I the covariance matrix.
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From single to multiple function values

How do we generalize the specification of the value at a single input to multiple
function values?

You might think you simply repeat the specification of mean p and variance o2
for each possible input.

That’s almost right, but not quite; the problem is the distinction between
marginals and joints.

output, f(x)

-5 ) 5
input, x
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Conditionals and Marginals of a Gaussian, pictorial

—joint Gaussian

. —joint Gaussian
—conditional

—marginal

Both the conditionals p(x|y) and the marginals p(x) of a joint Gaussian p(x,y) are
again Gaussian.
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Conditionals and Marginals of a Gaussian, algebra

If x and y are jointly Gaussian

pey) = (X)) = (2] [+ ED,

we get the marginal distribution of x, p(x) by

a}‘[A B

pxy) = N([p | [ 57 &) = p = NG, 4),

and the conditional distribution of x given y by

}’{A B

BT cb = p(xly) =N(a+BC '(y—b), A—BC'B"),

pxy) =N(| 1

where x and y can be scalars or vectors.
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From single to multiple and to infinitely many

For the value of the function f; = f(x1) at a single location x; we use a scalar
Gaussian f; ~ N(u, 02).

For the joint function f values at two locations x1,x, a multivariate Gaussian
f~ N(p> Z)

etc

For the joint distribution for the entire function f at all input locations, we use a
Gaussian Process f ~ N(m1, k).

Here, f, m and k are functions.

A function ~ infinitely long vector. The index set into a vector are 1,2,...D, the
index set into a function f(x) are the inputs x.

The mean function m(x) is a function of a single argument x, whereas the
covariance function k(x,x’) is a function of two arguments.
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What is a Gaussian Process?

Definition: a Gaussian process is a collection of random variables, any
finite number of which have (consistent) Gaussian distributions. O

We write

f ~ N(m, k) (1)

which is fully specified by it’s mean function 2 and covariance function k.

The only meaning we assign to the GP is that for any finite set of inputs x, the
corresponding

f=f(x) ~ Nu=m(x), L=k(xx)). (2)

The covariance function must be positive definite.
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Random functions from a Gaussian Process

Example one dimensional Gaussian process:
f ~ N(m, k), where m(x) =0, and k(x,x') = exp(—1(x —x’)?).
To get an indication of what this distribution over functions looks like, focus on a
finite subset of function values f = (f(x1),f(x2),...,f(xn)) ", for which
f ~ N(0,X), where X = k(xj,x;).

Draw a random value of f from the distribution as a function of the
corresponding x values

15

1+ +1+

o
a1
+

output, f(x)
o

-0
input, X
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Joint Generation

To generate a random sample from a D dimensional joint Gaussian with
covariance matrix K and mean vector m: (in octave or matlab)

z = randn(D,1);
chol(K) '*z + m;

<
]

where chol is the Cholesky factor R such that RTR = K.

Thus, the covariance of y is:

E[(y—m)(y—m)T] = E[R"zz"R] = R"E[zz"]R = RTIR = K.
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Sequential Generation

Factorize the joint distribution

N

P(f1>-~-»fN|x1»-~-xN) = Hp(fnvn—la~-')f1)xnv~-~>x1))

n=1
and generate function values sequentially. For Gaussians:

bt = N3], 57 c]) =

p(fulf-,) = N(a+BC'(f.,—b), A—BC'BT).
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Function drawn at random from a Gaussian Process with Gaussian covariance
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Gaussian Process Inference!l

With observations (x;,y;), where i = 1,...,n, collectively x and y, and a Gaussian

2

likelihood function with noise variance o7, .

Y|f y|f (y|f cjnom ) X exp(*% (ﬂiyi)z/o—ﬁoisc))
i=1

and a GP prior p(f), the joint distribution of function f and observations y is
p(fyy) = p(Apylf) = ply)p(fly)
= N(flm, k)N Y\f Gmel) = ZyN(flmyy, kyy),
with posterior
p(fly) = N(flmy, ky),

myy(x) = m(x) + R(x, X) k(% %) + 0pe, ] 7Hy — m(x)),
Where{ky(x,x/)—k(x,x/)—/e(x,xwe( ) o Ik (x 20,

and log marginal likelihood

noise

log Zjy = log N(ylm(x), k(x,x) + o2 I).

Lthroughout, we use the statistical meaning of the word inference, not the neural network one
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Prior and Posterior
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input, x input, x

Marginal distributions and samples of the joint, from the prior and the posterior
given 5 close to noise free observations.
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Hyperparameters: properties of covariance functions

The covariance function which we have seen before
R(x,x') = exp(—1(x —x')?),

encodes that f(x) and f(x’) have large covariance if x is close to x’, but it doesn’t
really quantify what is meant by close to?

We can parameterize the covariance function using hyperparameters such as ¢, in
(x — x/)z )

k(x,x") = exp(— T

Learning in Gaussian process models involves finding

e the form of the covariance function, and

¢ any unknown (hyper-) parameters 6.
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Example: Fitting the length scale parameter

2
. . . X —x
Parameterized covariance function: k(x,x’) = v*exp ( — %)

Characteristic Lengthscales

O too long
@ about right
O too short

function value, y

T T T T T
-10 -5 0 5 10
input, x
The posterior GP is plotted for 3 different length scales (the blue curve
corresponds to optimizing the marginal likelihood). Notice, that an almost exact
fit to the data can be achieved by reducing the length scale — but the marginal
likelihood does not favour this!
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The Gaussian process marginal likelihood

Log marginal likelihood has a closed form

log Z;, = logp(ylx)

= —%(y —m) " [K+ Gﬁ[]*l(y —m) — % log K + Gﬁll — g log(271)

and is the combination of a data fit term and complexity penalty. Occam’s Razor
is automatic.
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How can Bayes rule help find the right model
complexity? Marginal likelihoods and Occam’s Razor
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Y

All possible data sets
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An illustrative analogous example

Imagine the simple task of fitting the variance, 02, of a zero-mean Gaussian to a
set of n scalar observations.

X KRLFIKOOAK X

XXX R IR K

T .

The log likelihood is log p(ylu, 02) = —%yTIy/UZf% log |Io?] — 5 log(27)
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Model Selection, Hyperparameters, and ARD

We need to determine both the form and parameters of the covariance function.
We typically use a hierarchical model, where the parameters of the covariance are
called hyperparameters.

A very useful idea is to use automatic relevance determination (ARD) covariance
functions for feature/variable selection, e.g.:

Xg—x/
k(x,x") = v} exp (— Z (dsz)), hyperparameters 8 = (v, v1,. .., v4,02).
d
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Feed Forward Neural Networks

output unit Q linear
/ f \ Weight groups:
output weights
hidden units Q

tanh input—hidden
input units é . Q

bias—hidden
A feed forward neural network implements the function:

bias

H
flx) = Zvitanh(Zuj/x,'—l—bi)
i—1 i

Rasmussen Gaussian Processes October 23th, 2023 23/27



Limits of Large Neural Networks

Sample random neural network weights from a appropriately scaled Gaussian

prior.

2 hidden units 5 hidden units 1000 hidden units
5 5 5
[oN (o [oN
A= :
S S S
z z /\] E
2 -1 2 -1 2 -1

-10 0 10 -10 0 10 -10 0 10

input, x input, x input, X

Note: The prior on the neural network weights induces a prior over functions.
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Function drawn at random from a Neural Network covariance function
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Composite covariance functions

We’ve seen examples of covariance functions.
Covariance functions have to be positive definite.

One way of building covariance functions is by composing simpler ones in
various ways

¢ sums of covariance functions k(x,x’) = ky(x,x’) + ko (x,x’)

products k(x,x") = kq(x,x") X ka(x,x")

other combinations: g(x)k(x,x’)g(x’)
® etc.
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Conclusions

GPs are a small but powerful generalisation of the Gaussian to functions; we can

e calculate marginals
¢ sample from the joint marginals

e update when data is observed

GPs are the powerful, principled and practical way to do inference about
functions

Important things that I haven’t spoken about

e library of covariance functions
® non-Gaussian likelihoods

e computational constraints: sparse approximations

Want to know more:
Rasmussen and Williams (2006): Gaussian Processes for Machine Learning
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