Discrete Categorical Distribution

Ayush Tewari

November 24th, 2025

Adapted from Carl Edward Rasmussen

Key concepts

We generalize the concepts from binary variables to multiple discrete outcomes.

discrete and multinomial distributions

Key concepts

We generalize the concepts from binary variables to multiple discrete outcomes.

- discrete and multinomial distributions
- the Dirichlet distribution

- Generalisation of the binomial distribution from 2 outcomes to m outcomes.
- Useful for random variables that take one of a finite set of possible outcomes.

- Generalisation of the binomial distribution from 2 outcomes to m outcomes.
- Useful for random variables that take one of a finite set of possible outcomes.

Throw a die n = 60 times, and count the observed (6 possible) outcomes.

Outcome	Count
$X = x_1 = 1$	$k_1 = 12$
$X = x_2 = 2$	$k_2 = 7$
$X = x_3 = 3$	$k_3 = 11$
$X = x_4 = 4$	$k_4 = 8$
$X = x_5 = 5$	$k_5 = 9$
$X = x_6 = 6$	$k_6 = 13$

- Generalisation of the binomial distribution from 2 outcomes to m outcomes.
- Useful for random variables that take one of a finite set of possible outcomes.

Throw a die n = 60 times, and count the observed (6 possible) outcomes.

Outcome	Count
$X = x_1 = 1$	$k_1 = 12$
$X = x_2 = 2$	$k_2 = 7$
$X = x_3 = 3$	$k_3 = 11$
$X = x_4 = 4$	$k_4 = 8$
$X = x_5 = 5$	$k_5 = 9$
$X = x_6 = 6$	$k_6 = 13$

Note: We have one parameter too many.

We don't need to know all the
$$k_i$$
 and n , because $\sum_{i=1}^{6} k_i = n$.

Consider a discrete random variable X that can take one of m values $x_1, ..., x_m$.

• Out of n independent trials, let k_i be the number of times $X = x_i$ was observed.

It follows that $\sum_{i=1}^{m} k_i = n$.

Consider a discrete random variable X that can take one of m values x_1, \ldots, x_m .

- Out of n independent trials, let k_i be the number of times X = x_i was observed.
 It follows that ∑_{i=1}^m k_i = n.
- Denote by π_i the probability that $X = x_i$, with $\sum_{i=1}^{m} \pi_i = 1$.

Consider a discrete random variable X that can take one of m values x_1, \ldots, x_m .

- Out of n independent trials, let k_i be the number of times X = x_i was observed.
 It follows that ∑_{i=1}^m k_i = n.
- Denote by π_i the probability that $X = x_i$, with $\sum_{i=1}^{m} \pi_i = 1$.

The probability of observing a vector of occurrences $\mathbf{k} = [k_1, \dots, k_m]^{\top}$ is given by the *multinomial distribution* parametrised by $\boldsymbol{\pi} = [\pi_1, \dots, \pi_m]^{\top}$:

$$p(k|\pi,n) = p(k_1,\ldots,k_m|\pi_1,\ldots,\pi_m,n) = \frac{n!}{k_1!k_2!\ldots k_m!}\prod_{i=1}^m \pi_i^{k_i}$$

Consider a discrete random variable X that can take one of m values x_1, \ldots, x_m .

- Out of n independent trials, let k_i be the number of times X = x_i was observed.
 It follows that ∑_{i=1}^m k_i = n.
- Denote by π_i the probability that $X = x_i$, with $\sum_{i=1}^m \pi_i = 1$.

The probability of observing a vector of occurrences $\mathbf{k} = [k_1, \dots, k_m]^\top$ is given by the *multinomial distribution* parametrised by $\boldsymbol{\pi} = [\pi_1, \dots, \pi_m]^\top$:

$$p(k|\pi,n) = p(k_1,\ldots,k_m|\pi_1,\ldots,\pi_m,n) = \frac{n!}{k_1!k_2!\ldots k_m!}\prod_{i=1}^m \pi_i^{k_i}$$

- Note that we can write $p(k|\pi)$ since n is redundant.
- The multinomial coefficient $\frac{n!}{k_1!k_2!...k_m!}$ is a generalisation of $\binom{n}{k}$.

Consider a discrete random variable X that can take one of m values x_1, \ldots, x_m .

- Out of n independent trials, let k_i be the number of times X = x_i was observed.
 It follows that ∑_{i=1}^m k_i = n.
- Denote by π_i the probability that $X = x_i$, with $\sum_{i=1}^m \pi_i = 1$.

The probability of observing a vector of occurrences $\mathbf{k} = [k_1, \dots, k_m]^\top$ is given by the *multinomial distribution* parametrised by $\boldsymbol{\pi} = [\pi_1, \dots, \pi_m]^\top$:

$$p(\mathbf{k}|\boldsymbol{\pi}, \mathbf{n}) = p(k_1, \dots, k_m | \pi_1, \dots, \pi_m, \mathbf{n}) = \frac{\mathbf{n}!}{k_1! k_2! \dots k_m!} \prod_{i=1}^m \pi_i^{k_i}$$

- Note that we can write $p(k|\pi)$ since n is redundant.
- The multinomial coefficient $\frac{n!}{k_1!k_2!...k_m!}$ is a generalisation of $\binom{n}{k}$.

The discrete or *categorical distribution* is the generalisation of the Bernoulli to m outcomes, and the special case of the multinomial with one trial:

$$p(X = x_i | \pi) = \pi_i$$
.

Example: word counts in text

Consider describing a text document by the frequency of occurrence of every distinct word.

The UCI Bag of Words dataset from the University of California, Irvine. ¹

¹http://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/

Example: word counts in text

Consider describing a text document by the frequency of occurrence of every distinct word.

The UCI Bag of Words dataset from the University of California, Irvine. ¹

¹http://archive.ics.uci.edu/ml/machine-learning-databases/bag-of-words/

The Dirichlet distribution is to the categorical/multinomial what the Beta is to the Bernoulli/binomial.

The Dirichlet distribution is to the categorical/multinomial what the Beta is to the Bernoulli/binomial.

It is a generalisation of the Beta defined on the m-1 dimensional simplex.

The Dirichlet distribution is to the categorical/multinomial what the Beta is to the Bernoulli/binomial.

It is a generalisation of the Beta defined on the m-1 dimensional simplex.

• Consider the vector $\boldsymbol{\pi} = [\pi_1, \dots, \pi_m]^\top$, with $\sum_{i=1}^m \pi_i = 1$ and $\pi_i \in [0,1] \ \forall i$.

The Dirichlet distribution is to the categorical/multinomial what the Beta is to the Bernoulli/binomial.

It is a generalisation of the Beta defined on the m-1 dimensional simplex.

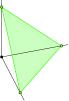
- Consider the vector $\boldsymbol{\pi} = [\pi_1, \dots, \pi_m]^\top$, with $\sum_{i=1}^m \pi_i = 1$ and $\pi_i \in [0, 1] \ \forall i$.
- Vector π lives in the open standard m-1 simplex.
- π could for example be the parameter vector of a multinomial. [Figure on the right m=3.]



The Dirichlet distribution is to the categorical/multinomial what the Beta is to the Bernoulli/binomial.

It is a generalisation of the Beta defined on the $\mathfrak{m}-1$ dimensional simplex.

- Consider the vector $\boldsymbol{\pi} = [\pi_1, \dots, \pi_m]^\top$, with $\sum_{i=1}^m \pi_i = 1$ and $\pi_i \in [0,1] \ \forall i$.
- Vector π lives in the open standard $\mathfrak{m}-1$ simplex.
- π could for example be the parameter vector of a multinomial. [Figure on the right m=3.]



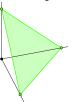
The Dirichlet distribution is given by

$$\mathrm{Dir}(\pi|\alpha_1,\ldots,\alpha_m) \;=\; \frac{\Gamma(\sum_{i=1}^m \alpha_i)}{\prod_{i=1}^m \Gamma(\alpha_i)} \prod_{i=1}^m \pi_i^{\alpha_i-1} \;=\; \frac{1}{B(\alpha)} \prod_{i=1}^m \pi_i^{\alpha_i-1}$$

The Dirichlet distribution is to the categorical/multinomial what the Beta is to the Bernoulli/binomial.

It is a generalisation of the Beta defined on the m-1 dimensional simplex.

- Consider the vector $\boldsymbol{\pi} = [\pi_1, \dots, \pi_m]^\top$, with $\sum_{i=1}^m \pi_i = 1$ and $\pi_i \in [0,1] \ \forall i$.
- Vector π lives in the open standard m-1 simplex.
- π could for example be the parameter vector of a multinomial. [Figure on the right m=3.]

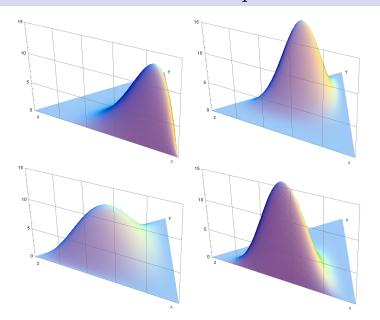


The Dirichlet distribution is given by

$$\mathrm{Dir}(\pi|\alpha_1,\ldots,\alpha_m) \;=\; \frac{\Gamma(\sum_{i=1}^m \alpha_i)}{\prod_{i=1}^m \Gamma(\alpha_i)} \prod_{i=1}^m \pi_i^{\alpha_i-1} \;=\; \frac{1}{B(\alpha)} \prod_{i=1}^m \pi_i^{\alpha_i-1}$$

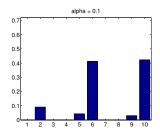
- $\alpha = [\alpha_1, \dots, \alpha_m]^{\top}$ are the shape parameters.
- $B(\alpha)$ is the multivariate beta function.
- $E(\pi_j) = \frac{\alpha_j}{\sum_{i=1}^m \alpha_i}$ is the mean for the j-th element.

Dirichlet Distributions from Wikipedia



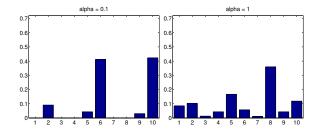
In the symmetric Dirichlet distribution all parameters are identical: $\alpha_i = \alpha$, $\forall i$. en.wikipedia.org/wiki/File:LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif To sample from a symmetric Dirichlet in D dimensions with concentration α use: w = randg(alpha, D, 1); bar(w/sum(w));

In the symmetric Dirichlet distribution all parameters are identical: $\alpha_i = \alpha$, $\forall i$. en.wikipedia.org/wiki/File:LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif To sample from a symmetric Dirichlet in D dimensions with concentration α use: w = randg(alpha,D,1); bar(w/sum(w));



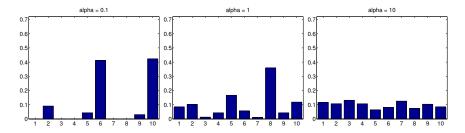
• Left: $\alpha = 0.1$ (Sparse / Spiky)

In the symmetric Dirichlet distribution all parameters are identical: $\alpha_i = \alpha$, $\forall i$. en.wikipedia.org/wiki/File:LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif To sample from a symmetric Dirichlet in D dimensions with concentration α use: w = randg(alpha,D,1); bar(w/sum(w));



- Left: $\alpha = 0.1$ (Sparse / Spiky)
- Middle: $\alpha = 1.0$ (Uniform)

In the symmetric Dirichlet distribution all parameters are identical: $\alpha_i = \alpha$, $\forall i$. en.wikipedia.org/wiki/File:LogDirichletDensity-alpha_0.3_to_alpha_2.0.gif To sample from a symmetric Dirichlet in D dimensions with concentration α use: w = randg(alpha,D,1); bar(w/sum(w));



- Left: $\alpha = 0.1$ (Sparse / Spiky)
- Middle: $\alpha = 1.0$ (Uniform)
- Right: $\alpha = 10$ (Peaked at center)