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Limitations of the mixture of categoricals model

@@%

p ! 1
ry ! ® ~ Dir(x)
! |
N :. i B ~ Dir(y)
I
: N ! za ~ Cat(0)
o d=1.D) Wnalza ~ Cat(Bs,)

A generative view of the mixture of categoricals model

k=1.K

@® Draw a distribution © over K topics from a Dirichlet(«).
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Limitations of the mixture of categoricals model
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@® Draw a distribution © over K topics from a Dirichlet(«).

@® For each topic k, draw a distribution By over words from a Dirichlet(vy).

® For each document d, draw a topic z4 from a Categorical(0)

® For each document d, draw N4 words wy 4 from a Categorical(f.,)
Limitations:

¢ All words in each document are drawn from one specific topic distribution.

® This works if each document is exclusively about one topic, but if some
documents span more than one topic, then “blurred” topics must be learnt.
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NIPS dataset: LDA topics 1 to 7 out of 20.
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NIPS dataset: LDA topics 8 to 14 out of 20.
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NIPS dataset: LDA topics 15 to 20 out of 20.
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Latent Dirichlet Allocation (LDA)

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
H\’\\' many genes \{I)L“ an l’rg}u\i}ul l\ﬂl‘\] oy
survive! Last week at the genome meeting
llL'l T lwo genome rL“Cllr(hCl"‘ W 1[11 rﬂl“\":l“\'

different approaches presented complemen-
tary views of the basic genes needed forlife,
k)nu ['U?‘l‘l”'(h ream, using computer ‘\]n‘\lh

ses o compare I{Ih\\\'ﬁ £ 3 Cl\ﬂClle]k\l

that today’s Organisis can be sustained with
just 250 genes, and thar the earliest life forms
required a mere 128 oenes. The S
other researcher mapped genes
ina simple parasite and esti- / e
mated that ‘ml this organism, [
300 genes are phnt\ todo the \
job—but that anything short
ot 100 wouldn't be enough.
Although the numbers don’t
match precisely, those predictions

1703 genes

* Genome Mapping and Sequenc-
ing. Cold Spring Harbor, New York,
May 8 to 12.

SCIENCE & VOL. 272 & 14 MAY 1990
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“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived ar the
800 number. But coming up with a consen-
sus answer may be more than just a genetic
numbers game, particularly as more and
more -mw are completely mapped and
It mav he a way of organizing
explains

sequenced. ©

any newly sequenced genome,”

- Arcady Mushegian, a computational mo-

> lecular biologist at the National Center

Y for Biotechnology Information (NCBI)
\

| in Bethesda,

Maryland. Comparing an

Selaled ang
modern genes
removed
-122 genes

/ winienar 1
| gene set wgana

| zso g!ms

m L.Pb“

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes
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Generative model for LDA

Topics Documents

Topic proportions and

assignments
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® Each topic is a distribution over words.
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® Each topic is a distribution over words.
¢ Each document is a mixture of corpus-wide topics.
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® Each topic is a distribution over words.
¢ Each document is a mixture of corpus-wide topics.
® Each word is drawn from one of those topics.

from David Blei
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The LDA graphical model

Per document Observed
topic proportions word
Proportions Per word topic ) Topic
parameter assignment Topics  parameter
i=1N k=1:K
d=1:D

® Nodes are random variables; edges indicate dependence.

¢ Shaded nodes indicate observed variables.
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The difference between mixture of categoricals and
LDA
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A generative view of LDA

© For each document d draw a distribution 04 over topics from a
Dirichlet(«).

Ayush Tewari Latent Dirichlet Allocation for Topic Modeling December 2nd, 2025 9/17



The difference between mixture of categoricals and
LDA

02081080

|
1 n=1.Ny

S0 cloce [Gie

A generative view of LDA

© For each document d draw a distribution 04 over topics from a
Dirichlet(«).
@® For each topic k draw a distribution By over words from a Dirichlet(y).
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A generative view of LDA
© For each document d draw a distribution 04 over topics from a
Dirichlet(«).
@® For each topic k draw a distribution By over words from a Dirichlet(y).

® Draw a topic znq for the n-th word in document d from a Categorical(04)

Ayush Tewari Latent Dirichlet Allocation for Topic Modeling December 2nd, 2025 9/17



The difference between mixture of categoricals and
LDA

02081080

|
1 n=1.Ny

S0 cloce [Gie

A generative view of LDA
© For each document d draw a distribution 04 over topics from a
Dirichlet(«).
@® For each topic k draw a distribution By over words from a Dirichlet(y).
® Draw a topic znq for the n-th word in document d from a Categorical(04)
® Draw word wy 4 from a Categorical(B., ,)
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The difference between mixture of categoricals and
LDA

A generative view of LDA
© For each document d draw a distribution 04 over topics from a
Dirichlet(«).
@® For each topic k draw a distribution By over words from a Dirichlet(y).
® Draw a topic znq for the n-th word in document d from a Categorical(04)
® Draw word wy 4 from a Categorical(B., ,)
Differences with the mixture of categoricals model:
® In LDA, every word in a document can be drawn from a different topic,
® and every document has its own distribution over topics 0 4.
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The posterior distribution
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® In reality, we only observe the documents.

Ayush Tewari

from David Blei

Latent Dirichlet Allocation for Topic Modeling December 2nd, 2025

10/17



The posterior distribution

Topic proportions and

Topics Documents assignments
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® In reality, we only observe the documents.
® The other structure are hidden variables.

from David Blei
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The posterior distribution

Topics Documents

Topic proportions and
assignments
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® Our goal is to infer the hidden variables.
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The posterior distribution

P Topic proportions and
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® Our goal is to infer the hidden variables.
¢ This means computing their distribution conditioned on the documents
p(topics, proportions, assignments|documents)
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The LDA inference problem

OFH@-D-@—HHEOHO
P(B1:x, 01.0, {znah {Wnally, «)
K D Ng
H Bey) T [p(0ale) [T [P(znal®a)p(WnalBroxszna)]
k=1 d=1 n=1
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The LDA inference problem
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n=1

Learning involves computing the posterior over the parameters, B1.x and 01.p
given the words {wn, 4}, but this requires the we marginalize out the latent {z,4}.
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The LDA inference problem
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Learning involves computing the posterior over the parameters, B1.x and 01.p
given the words {wn, 4}, but this requires the we marginalize out the latent {z,4}.

How many configurations are there?

This computation is intractable.
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The intractability of LDA

The evidence (normalising constant of the posterior):

D K Ng
plovne) = | [ TTTT TT X plenal0ap(0aloipwnalBr zna)p(Bily)dBrdos
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The intractability of LDA

The evidence (normalising constant of the posterior):
D K Ng
plovne) = | [ TTTT TT X plenal0ap(0aloipwnalBr zna)p(Bily)dBrdos

We need to average over all possible set of values of all z 4. If every document
had N words, this means K™ configurations per document.
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Gibbs to the Rescue

The posterior is intractable because there are too many possible latent {z, 4}.
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Gibbs to the Rescue

The posterior is intractable because there are too many possible latent {z, 4}.

Sigh, ... if only we knew the {znq4}...?
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Gibbs to the Rescue

The posterior is intractable because there are too many possible latent {z, 4}.
Sigh, ... if only we knew the {znq4}...?

Which might remind us of Gibbs sampling ... could we sample each latent
variable given the values of the other ones?
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Refresher on Beta and Dirichlet

If we had a p(m) = Beta(«, 3) prior on a binomial probability 7, and observed k
successes and n — k failures, then the posterior probability

p(mn, k) = Beta(a + k, f +n — k),
and the predictive probability of success at the next experiment

ox+k

p(successn, k) = Jp(successln)p(ﬂln, k)dmt = E[ntn, k] = m.
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Refresher on Beta and Dirichlet

If we had a p(m) = Beta(«, 3) prior on a binomial probability 7, and observed k
successes and n — k failures, then the posterior probability

p(mn, k) = Beta(a + k, f +n — k),
and the predictive probability of success at the next experiment

ox+k

p(successn, k) = Jp(successln)p(ﬂln, k)dmt = E[ntn, k] = m.

Analogously, if we had a prior p(7t) = Dir(«y, ..., ai) on the parameter 7t of a
multinomial, and ¢y, ..., ckx observed counts of each value, the posterior is

p(mteq, ... ,ck) = Dir(og +c1y. ..y ax + ck),
and the predictive probability that the next item takes value j is:

&5 +¢§

P(j|C1,...,ck):Jp(j|n)p(n\c1,...,ck)dn:E[n\c1,...,ck] = m
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Collapsed Gibbs sampler for LDA

In the LDA model, we can integrate out the parameters of the multinomial
distributions, 64 and 3, and just keep the latent counts z,,q. Sampling these znq
in turn is called a collapsed Gibbs sampler.
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Collapsed Gibbs sampler for LDA

In the LDA model, we can integrate out the parameters of the multinomial
distributions, 64 and 3, and just keep the latent counts z,,q. Sampling these znq
in turn is called a collapsed Gibbs sampler.

Recall, that the predictive distribution for a symmetric Dirichlet is given by

X+ Cq

P S atg
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Collapsed Gibbs sampler for LDA

In the LDA model, we can integrate out the parameters of the multinomial
distributions, 64 and 3, and just keep the latent counts z,,q. Sampling these znq
in turn is called a collapsed Gibbs sampler.

Recall, that the predictive distribution for a symmetric Dirichlet is given by

X+ Cq

P T arg

Now, for Gibbs sampling, we need the predictive distribution for a single z 4
given all other z,, 4, ie, given all the counts except for the word n in document d.
The Gibbs update contains two parts, one from the topic distribution and one
from the word distribution:

o+ ck v +Ek
plzna = kizonalh Why, ) o — e
(¢ g) Y (v+es,)
j=1 m=1

where c¥, , is the count of words from document d, excluding n, assigned to
topic k, and ¢* | is the number of times word m was generated from topic k
(again, excluding the observation nd).
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Derivation of the collapsed Gibbs sampler

The prObabﬂity Of eVeI‘ythir;é-; --------------
K D Ny
P(B1ax, 010, {znaly wWnally, o) = [ [ p(Buly) [T |p0aled T [P(znal®a)p(wnalBrix, zna)
k=1 e 11
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Derivation of the collapsed Gibbs sampler

The probability of everything:

v]
z
a

p(B]:K)el:D){an}){Wnd}h/) HP Bkh/ H ( d|(x) [p(znd|ed)p(wnd|ﬁl:Kyan)

d=1 n=1
What we want for Gibbs sampling is:

p(an = k|{and}){W}»’y’ OC)
X p(zna = kl{z—nal, &) p(Wnalzna = k,{w_nah{z—nalv)

xtck g y+eEk, .,
T K M
) ~k
Z oa+cl (v +cs)
j=1 m=1
where ¢/ def Z I(zn/q =j) and * def I = I =k
Lha = nra =jland X, = (Wnrar =m) I(znrar = k).
n'#n (n’,d")#(n,d)

Ayush Tewari Latent Dirichlet Allocation for Topic Modeling December 2nd, 2025 17 /17



