
Homework 2: Part I

Statistical Approaches to Learning and Discovery

Zoubin Ghahramani & Teddy Seidenfeld

Due: Mon Mar 18, 2002

Consider the multiple cause model discussed in class. This is a model with K binary latent
variables, si, real-valued observed vector y and parameters θ = {{µi, πi}Ki=1, σ

2}

p(s1, . . . , sK |π) =
K∏
i=1

p(si) =
K∏
i=1

πsii (1− πi)(1−si)

p(y|s1, . . . , sK ,µ, σ
2) = N (

∑
i

siµi, σ
2I)

Assume you have a data set of N i.i.d. observations of y, i.e. Y = {y(1), . . . ,y(N)}.
General Matlab hint: wherever possible, avoid looping over the data points. Many (but not

all) of these functions can be written using matrix operations.

Warning: Each question depends on earlier questions. If you get stuck early on, send an email
or come talk to Zoubin. As always, you are welcome to discuss the homework with each other, but
write up and hand in your own work.

Hand in: Derivations, code and plots.

1. Implement the fully factored (a.k.a. mean-field) variational approximation described in
class. That is, for each data point y(n), approximate the posterior distribution over the
hidden variables by a distribution:

qn(s) =
K∏
i=1

λsiin(1− λin)(1−si)

and find the λ’s that maximize F holding θ fixed. Specifically, write a Matlab function:

[lambda,F] = MeanField(Y,mu,sigma,pie,lambda0,maxsteps)

where lambda is N ×K, F is the lower bound on the likelihood, Y is the N ×D data matrix,
mu is the D ×K matrix of means, pie is the 1×K vector of priors on s, lambda0 are initial
values for lambda and maxsteps are maximum number of steps of the fixed point equations.
You might also want to set a convergence criterion so that if F changes by less than ε the
iterations halt.

2. Derive the conditional probability:

p(si|s1, . . . , si−1, si+1, . . . , sK ,y,θ)

3. Using the above conditional probability, implement Gibbs sampling to approximate the
posterior distribution over the hidden states given the data. Specifically, write a Matlab
function:



[S] = Gibbs(Y, mu, sigma, pie, S0, nsamples)

where S is a N ×K× nsamples array of samples over the hidden variables, S0 is an N ×K
matrix of initial settings for the hidden variables.

4. Derive the M step for this model in terms of the quantities: Y, ES = Eq[s], which is an N ×K
matrix of expected values, and ESS = Eq[ss

>], which is an N × K × K array of expected
values. Hint: write down the expected log of the joint probability of s and y summed over
the data, take derivatives w.r.t. the parameters and set to zero. The solution should look like
linear regression.

5. Using the above, implement:

[mu, sigma, pie] = MStep(Y,ES,ESS)

You might be able to implement it using ESS = a K ×K matrix summing over N of ESS as
defined above.

6. Put the E step and M step code together into a function:

[mu, sigma, pie] = LearnMultipleCause(Y,K,iterations,gibbsflag)

where K is the number of causes, iterations are maximum number of iterations of EM, and
gibbsflag = 1 means use Gibbs, otherwise, use mean field. For the mean field algorithm,
make sure F always increases (this is a good debugging tool).

7. For some setting of Y, mu, sigma, pie plot various statistics of S as a function of sampling
iteration for Gibbs sampling. Can you assess (visually) how long it takes for the Gibbs sampler
to converge? How is this affected by increases and decreases in sigma? Why?

8. For some setting of Y, mu, sigma, pie, plot F and log(F(t)-F(t-1)) as a function of
iteration number t for MeanField. How rapidly does it converge? How is this affected by
increases and decreases of sigma?

9. Examine the data images.jpg shown on the web site (Do not look at genimages.m yet!).
This shows 100 greyscale 4× 4 images generated by randomly combining several features and
adding a little noise. Try to guess what these features are by staring at the images. How
many are there? Would you expect factor analysis to do a good job modelling this data? How
about mixture of Gaussians? Explain your reasoning.

10. Run your algorithm for learning the multiple cause model on the data set generated by
genimages.m. What features mu does the algorithm learn (rearrange them into 4×4 images)?
How do the Gibbs and variational algorithms differ? Which do you prefer? How could you
improve the algorithm and the features it finds? Explain any choices you make along the
way and the rationale behind them (e.g. what to set K, how to initialize parameters, hidden
states, and lambdas).

11. BONUS: Given known values of σ2 and π, and a sample of s and y, what is the conjugate
prior for the µs? Implement a sampling procedure for µ given σ2, π, s and y. You might want
to use Gibbs sampling or Metropolis. Show some samples from the posterior distribution of
mu.


