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“SALD” Homework Part 2, Problems 2.1 – 2.3. 
(This is due in class on Monday, March 18, 2002, with part 1.) 

 
In the following exercises, you will explore several important aspects of convergence for the 
EM algorithm to compute an MLE when the complete data are from the exponential family 
of distributions.   
 

1. The first problem reminds you of some basic properties of the exponential family 
and asks you to identify two familiar distributions as belonging to this family. 

   
2. The second problem steps you through a result showing that the sequence of EM 

estimates for a (one-dimensional) MLE in the exponential family converges 
monotonically to MLE, either from below or from above the MLE, depending on the 
starting value for the EM algorithm. 

 
3. The third problem steps you through a result about the rate of convergence of the 

sequence of EM estimates for the MLE in the same (one-dimensional) exponential 
family.  That rate is given by the “Missing Information Principle”: See Tanner’s 
discussion in section 4.4 for more background on this problem. 

 
Problem 2.1:  
Background:  Here are some basic facts about the Exponential Family.  (See Tanner 4.3, or 
Casella and Berger’s book, where it appears in section 3.3 in the 1st ed.) 
 
Defn:  A random variable X (or random vector X) has its distribution in the exponential 
family with k-dimensional parameter θ providing that its density function f can be written as: 

f(x | θ)  =  b(x) exp[ )(1 θ∑ =
k
i ig ti(x)] / a(θ) 

where a (≥ 0) and the ti are real-valued functions of the data only; where b (≥ 0) and the gi 
are real-valued functions of the parameter only. 
 
It is evident from the form of the density for the exponential family that the k-many statistics 
T = (t1(x), …, tk(x)) are sufficient for θ.   
 
Defn.:  Call Γ = (g1(θ), …, gk(θ)), the k-dimensional natural parameter of the family,  
  and T = (t1(x), …, tk(x)), the k-dimensional natural sufficient statistic of the family. 
Moreover, the natural sufficient statistic T also has its distribution within the exponential 
family, using the same natural parameters. 
 
Let Xj (j = 1, …, n) be iid sample of size n from an exponential family.  Define the k-many 
statistics Ti = Σj ti(xj).  It follows that (T1, …, Tk) are jointly sufficient and have a 
distribution from the exponential family, with the same natural parameters as the Xj. 
 
Exercise 2.1.1:  Show that an iid sample of size n from the Binomial Bin(n, θ) distribution 
(0 < θ < 1) belongs to a exponential family with dimension k = 1.  What are the natural 
parameter and sufficient statistic here? 
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Exercise 2.1.2: Show that an iid sample of size n from the Normal N(µ, σ2) distribution 
(with µ ∈  ℜ , and 0 < σ ) belongs to a exponential family with dimension k = 2.  What are its 
natural parameters and sufficient statistics? 
 
Problem 2.2:   
Let the observed data X = x come from a statistical model with density g(x | θ).  We want to 
find the MLE,  argmaxθ log g(x | θ) = L(θ).  We apply the EM algorithm with complete data 
Z, which we assume come from a 1-dimensional exponential family, whose natural 
parameter is taken for convenience also as θ and whose density, f(z | θ), is described above 
in problem 2.1. 
 
First.  Show that E[T(z) | θ] = α′ (θ) and that E[T(z) | x, θ] = α′ (θ) + L′′′′(θ). 
 Hint:  Remember that  h(z |x, θ)  =  f(z | θ) / g(x | θ) is the conditional density for the 
complete data z, given the observed data x.   

Thus,   log h(z |x, θ) =  T(z)θ + β(z) - α(θ) - L(θ), since 
  log f(z | θ) = T(z)θ + β(z) - α(θ) 
where α(θ) = log a(θ) and likewise β(z) = log b(z) 
Differentiate and take expectations. 
Argue that E[∂/∂θ  log f(z | θ) ]  =  Ex[∂/∂θ  log h(z |x, θ) ]  =  0. 

Thus, L′′′′(θ) = E[T(z) | x, θ] - E[T(z) | θ]   
Side remark: As L′′′′( θ̂ ) = 0, then E[T(z) | θ̂ ] = E[T(z) | x, θ̂ ].  That is, the MLE θ̂  makes 
the incomplete and complete data uncorrelated! 
Second.   Solve for θj+1 which is the j+1st EM estimate of the MLE. 
 Hint: Argue that θj+1 solves α′ (θj+1) = E[T(z) | x, θj] = E[T(z) | θj+1]. 

Third.    Conclude that, because δ(θ) = E[T(z) | x, θ] - E[T(z) | θ] > 0 for θ  < θ̂  and δ(θ) < 
0 for  θ  > θ̂ , then the sequence of EM estimators converges monotonically upwards to θ̂  if 
started from below θ̂  and converges monotonically downwards to θ̂  if stared from above θ̂ . 
 
Problem 2.3: 
Last, for determining the rate of convergence in the sequence of EM estimates of the 
MLE, θ̂ , argue as follows: 

Denote by Iz(θ) the Fisher Information contained in the complete data with respect to 
θ, associated with the density f(z | θ).  Likewise, denote by Iz|x(θ) the Fisher information 
with respect to θ associated with the conditional density h(z |x, θ).   

 
Fourth:  Show that Iz(θ) = α′′ (θ) and that Iz|x(θ) = α′′ (θ) + L′′′′′′′′(θ). 
 
Fifth:  Show that as j → ∞, the rate (θj+1- θ̂ ) / (θj- θ̂ )  = Iz|x( θ̂ ) / Iz( θ̂ ). 

Hint: Use these two linear approximations for θ in the neighborhood of θ̂ : 
  E[T(z) | x, θ] = E[T(z) | x, θ̂ ]  + Iz|x(θ)(θ - θ̂ ) 

  E[T(z) | θ] = E[T(z) | θ̂ ]  + Iz(θ)(θ - θ̂ ). 
Explain what this results shows about the rate of convergence in the EM estimate of the 
MLE as a function of how much information is added to X in order to make up the complete 
data Z. 


