"SALD" Homework **Part 2, Problems 2.1 – 2.3.** (This is due in class on Monday, March 18, 2002, with part 1.)

In the following exercises, you will explore several important aspects of convergence for the *EM* algorithm to compute an MLE when the complete data are from the *exponential family* of distributions.

- 1. The first problem reminds you of some basic properties of the exponential family and asks you to identify two familiar distributions as belonging to this family.
- 2. The second problem steps you through a result showing that the sequence of *EM* estimates for a (one-dimensional) MLE in the exponential family converges *monotonically* to MLE, either from below or from above the MLE, depending on the starting value for the EM algorithm.
- 3. The third problem steps you through a result about the *rate of convergence* of the sequence of *EM* estimates for the MLE in the same (one-dimensional) exponential family. That rate is given by the "Missing Information Principle": See Tanner's discussion in section 4.4 for more background on this problem.

Problem 2.1:

Background: Here are some basic facts about the Exponential Family. (See Tanner 4.3, or Casella and Berger's book, where it appears in section 3.3 in the 1^{st} *ed*.)

Defn: A random variable *X* (or random vector *X*) has its distribution in the *exponential family* with *k*-dimensional parameter θ providing that its density function *f* can be written as:

$$f(x \mid \theta) = b(x) \exp[\sum_{i=1}^{k} g_i(\theta) t_i(x)] / a(\theta)$$

where $a (\ge 0)$ and the t_i are real-valued functions of the data only; where $b (\ge 0)$ and the g_i are real-valued functions of the parameter only.

It is evident from the form of the density for the exponential family that the *k*-many statistics $T = (t_I(x), ..., t_k(x))$ are sufficient for θ .

Defn.: Call $\Gamma = (\boldsymbol{g}_{l}(\theta), ..., \boldsymbol{g}_{k}(\theta))$, the *k*-dimensional *natural parameter* of the family,

and $T = (t_1(x), ..., t_k(x))$, the *k*-dimensional *natural sufficient statistic* of the family. Moreover, the natural sufficient statistic T also has its distribution within the exponential family, using the same natural parameters.

Let X_j (j = 1, ..., n) be *iid* sample of size *n* from an exponential family. Define the *k*-many statistics $T_i = \sum_j t_i(x_j)$. It follows that $(T_1, ..., T_k)$ are jointly sufficient and have a distribution from the exponential family, with the same natural parameters as the X_j .

Exercise 2.1.1: Show that an *iid* sample of size *n* from the Binomial $Bin(n, \theta)$ distribution $(0 < \theta < 1)$ belongs to a exponential family with dimension k = 1. What are the natural parameter and sufficient statistic here?

Exercise 2.1.2: Show that an *iid* sample of size *n* from the Normal N(μ , σ^2) distribution (with $\mu \in \Re$, and $0 < \sigma$) belongs to a exponential family with dimension k = 2. What are its natural parameters and sufficient statistics?

Problem 2.2:

Let the observed data X = x come from a statistical model with density $g(x | \theta)$. We want to find the *MLE*, $\operatorname{argmax}_{\theta} \log g(x | \theta) = L(\theta)$. We apply the *EM* algorithm with complete data *Z*, which we assume come from a 1-dimensional exponential family, whose natural parameter is taken for convenience also as θ and whose density, $f(z | \theta)$, is described above in problem **2.1**.

First. Show that $\mathbf{E}[T(z) | \theta] = \alpha'(\theta)$ and that $\mathbf{E}[T(z) | x, \theta] = \alpha'(\theta) + L'(\theta)$.

Hint: Remember that $h(z | x, \theta) = f(z | \theta) / g(x | \theta)$ is the conditional density for the complete data *z*, given the observed data *x*.

Thus, $\log h(z \mid x, \theta) = T(z)\theta + \beta(z) - \alpha(\theta) - L(\theta)$, since $\log f(z \mid \theta) = T(z)\theta + \beta(z) - \alpha(\theta)$ where $\alpha(\theta) = \log a(\theta)$ and likewise $\beta(z) = \log b(z)$ Differentiate and take expectations. Argue that $\mathbf{E}[\partial/\partial\theta \log f(z \mid \theta)] = \mathbf{E}_{\chi}[\partial/\partial\theta \log h(z \mid x, \theta)] = 0$.

Thus, $L(\theta) = \mathbf{E}[T(z) | x, \theta] - \mathbf{E}[T(z) | \theta]$

Side remark: As $L(\hat{\theta}) = 0$, then $E[T(z) | \hat{\theta}] = E[T(z) | x, \hat{\theta}]$. That is, the MLE $\hat{\theta}$ makes the incomplete and complete data uncorrelated!

Second. Solve for θ_{j+1} which is the $j+1^{st}$ *EM* estimate of the MLE.

Hint: Argue that θ_{j+1} solves $\alpha'(\theta_{j+1}) = \mathbf{E}[\mathbf{T}(z) | x, \theta_j] = \mathbf{E}[\mathbf{T}(z) | \theta_{j+1}].$

Third. Conclude that, because $\delta(\theta) = \mathbf{E}[\mathbf{T}(z) | x, \theta] - \mathbf{E}[\mathbf{T}(z) | \theta] > 0$ for $\theta < \hat{\theta}$ and $\delta(\theta) < 0$ for $\theta > \hat{\theta}$, then the sequence of *EM* estimators converges monotonically upwards to $\hat{\theta}$ if started from below $\hat{\theta}$ and converges monotonically downwards to $\hat{\theta}$ if started from above $\hat{\theta}$.

Problem 2.3:

Last, for determining the *rate of convergence* in the sequence of *EM* estimates of the MLE, $\hat{\theta}$, argue as follows:

Denote by $\mathbf{I}_{z}(\theta)$ the Fisher Information contained in the complete data with respect to θ , associated with the density $f(z \mid \theta)$. Likewise, denote by $\mathbf{I}_{z|x}(\theta)$ the Fisher information with respect to θ associated with the conditional density $h(z \mid x, \theta)$.

Fourth: Show that $I_z(\theta) = \alpha''(\theta)$ and that $I_{z|x}(\theta) = \alpha''(\theta) + L''(\theta)$.

Fifth: Show that as $j \to \infty$, the rate $(\theta_{j+1} - \hat{\theta}) / (\theta_j - \hat{\theta}) = \mathbf{I}_{z|x}(\hat{\theta}) / \mathbf{I}_z(\hat{\theta})$.

Hint: Use these two linear approximations for θ in the neighborhood of $\hat{\theta}$:

$$\mathbf{E}[\mathbf{T}(z) \mid x, \theta] = \mathbf{E}[\mathbf{T}(z) \mid x, \hat{\theta}] + \mathbf{I}_{z|x}(\theta)(\theta - \hat{\theta})$$
$$\mathbf{E}[\mathbf{T}(z) \mid \theta] = \mathbf{E}[\mathbf{T}(z) \mid \hat{\theta}] + \mathbf{I}_{z}(\theta)(\theta - \hat{\theta}).$$

Explain what this results shows about the rate of convergence in the EM estimate of the MLE as a function of how much information is added to X in order to make up the complete data Z.