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Remarks on Improper “Ignorance” Priors 

•  As a limit of proper priors 

 

•  Two caveats relating to computations with improper priors, based on 

their relationship with finitely-additive, but not countably-additive 

probability. 

1.  Failure of the law of conditional expectations and “integrating-out.” 

2.  Equivalent (transformed) random variables and “integrating-out.” 
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You have seen (HW #1) that for X ∼  N(θ, σ2), with the variance specified,  

 if θ has a (Normal) conjugate prior θ ∼  N(µ, τ2), then the posterior for θ 

satisfies    P(θ | x)  ∼  N(µ′, τ′2)   

where   µ′ = (σ2µ + τ2x) / (σ2+τ2)   and   τ′2 = σ2τ2 / (τ2+σ2) 

 

If we let τ2 → ∞ in the posterior probability, P(θ | x)  → N(x, σ2).    

This is a case where the Confidence Interval theory, and the Bayesian posterior 

probability for these intervals agree.   

 

The corresponding “improper” prior is the uniform (Lebesgue) density for θ, dθ. 
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However, though Lebesgue measure is a σ-finite measure, it corresponds to a 

(class of) finitely, but not countably additive probabilities. 

 

That is, with Lebesgue measure used to depict a probability distribution for θ, 

the resulting probability satisfies shift-invariance:  for all i and j 

P(i ≤ θ ≤ i+1) =  P(j ≤ θ ≤ j+1). 
 

Then, even by finitely additive reasoning,  

P(i ≤ θ ≤ i+1) =  0 

As the line is a countable union of unit-intervals, P is not countably additive!  
 

What are the consequences of using a finitely additive, but not countably 

additive prior probability for θ, disguised as an improper prior? 
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Anomalous Example 1:   

Let X and Y be independent Poisson random variables where  
X has mean θ   and   Y has mean λθ 

   
Let the prior for the parameters be the product of  

the uniform improper Lebesgue density for λ > 0  

and a proper Gamma Γ(2,1) density for θ. 
 

 
Observe Y = y first.   
 
For computing a formal Bayes’ posterior,  

product of prior and likelihood densities satisfies: 

f(y, θ, λ) = exp[-θ(λ+1)](θλ)yθ/y! 
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•  Not surprisingly, one observation of Y proves uninformative about λ, as 

the integral of  f(y, θ, λ) with respect to θ is 1, improper. 

 

•  To find the marginal posterior for θ given Y, evaluate the integral of   

f(y, θ, λ) with respect to λ, leading to   

g(y,θ) = exp[-θ], a proper Γ(1,1) distribution. 

 

BUT, this formal application of Bayes’ theorem with the (partially) 

improper prior yields the same proper Gamma Γ(1,1) marginal posterior 

for θ given y, regardless the value of Y observed!   
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The (proper) marginal posterior distribution for θ, Γ(1,1), is a different 

distribution than the (proper) marginal prior distribution for θ, Γ(2,1). 

Evidently, E[θ] ≠ E[ E[θ|Y] ] 

 
But the anomaly is not restricted to inference about the parameters: 
Consider the distribution of X.   Prior to observing Y = y, we have 

P(X = 2)  = θθθθθ d])exp[])(exp[(0 2
2

−−∫
∞   = 3/16. 

However, conditioned by Y = y, as X and Y are independent given (λ,θ), we get 

  P(X = 2 | Y = y)  =  θθθθ d]exp[])exp[(0 2
2

−−∫
∞   = 1/8 

independent of the observed value y. 
 
This, too, is an evident violation of the law of conditional expectations as: 
      E[X] ≠  E[ E[X|Y] ] 
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Even though these posterior distributions are proper, that they are the 

consequence of a finitely, but not countably additive (improper) prior 

probability affects them as follows. 

 
Theorem:  Every finitely additive but not countably additive probability P 

admits an infinite partition π = {h1, h2, …., hn,…}, event F, and δ > 0 where: 

    P(F) ≥ k and yet P(F | hi) <  k - δ  (i = 1, 2, …)  

 

Evidently, then, E[F] ≠ E[ E[F|h] ]   and one cannot write 
 

P(F)  =  ∫h P(F | hi) dP(hi) 

as always is possible for the countably additive case. 



 8

In the example, above, this anomaly occurs in the partition of the random 

variable Y, and affects the conditional probability for the parameter θ and the 

conditional probability for the other observable X, given Y. 

 

Here is a second version of the same problem using Jeffreys’ improper prior for 

Normally distributed data. 

 

Anomalous Example 2  (Buehler-Feddersen, 1963):   

Let (X1,X2) be conditionally iid N(µ,σ2).   

Trivially, as µ is the median of the distribution, for each pair (µ,σ2),  
  

 P(Xmin ≤ µ ≤ Xmax | µ,σ2) = .50. 
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It is a straightforward calculation that, using H.Jeffreys’ improper prior 

p(µ,σ2)   ∝    dµ dσ/σ,  

which also is a limit of conjugate priors, then, for each pair (x1, x2)   

 P(xmin ≤ µ ≤ xmax | x1, x2)  =  .50. 
 
Define a statistic t = (x1+x2)/(x1-x2).  So, for pairs (x1, x2) satisfying |t| ≤ 1.5,  

 P(xmin ≤ µ ≤ xmax | x1, x2, |t| ≤ 1.5)  = .50.      (*) 
 

Buehler and Feddersen (1963) show that, for each pair (µ,σ2), however, 

    P(Xmin ≤ µ ≤ Xmax | µ,σ2, |t| ≤ 1.5)  > .518.       (**) 
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o Integrating-out in the (X1, X2)-partition, using (*), we get: 

 P(Xmin ≤ µ ≤ Xmax | |t| ≤1.5)  = .50.     

o Integrating-out in the (µ,σ2)-partition, using (**), we get: 

 P(Xmin ≤ µ ≤ Xmax | |t| ≤ 1.5)  > .518.     

 

Evidently, with Jeffreys’ improper prior, at least one of these two 

partitions must fail to allow “integrating-out.”   

But which one is the culprit, or is “integrating-out” illicit in them 

both? 
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(2) Equivalent random variables and “integrating-out” a nuisance parameter 
under an improper prior. 
 
Here is an illustration of the general problem. 

Let (X1, X2) be positive, real-valued random variables. 

Consider the (uniform) improper prior density 

p(x1, x2)  ∝  dx1dx2 

By usual rules for factoring:   p(x1, x2)  = p(x1 | x2)p(x2) = p(x2 | x1)p(x1)   

the joint density is the independent product of two improper uniform marginal 

distributions      p(x1, x2)  ∝  p(x1) p(x2).  
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Transform to the equivalent pair (X1, Y), where Y  =  X2/X1.   

The improper joint density for (X1, Y) is   
p(x1, y)  ∝   x1dx1dy. 

By usual rules for factoring this is the independent product of the two improper 

marginal priors    p(x1, y) = p*(x1) p(x2), 

where       p*(x1) ∝   x1dx1  ≠  p(x1) ∝  dx1 

and p*(x1) is off by the Jacobian of the transformation from (X1, X2) to (X1, Y). 

Note: This is a magnification of a familiar (measure 0) problem with σ-additive 

probability – the so-called “Borel” paradox.  Where, for a set of measure 0, it is 

possible that, though (X, Y) is an equivalent pair to (X, Z), and though Y = y0 is 

equivalent to Z = z0 , nonetheless 

P(X |Y = y0) ≠  P(X |Z = z0)   
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Example (Dawid and Stone, 1972): 

 Let X =(X1, X2, …, Xn) (n > 1) be conditionally iid N(µ,σ2), and use 

Jeffreys’ improper (joint) prior density   p(µ,σ )   ∝   dµdσ/σ,  

which can be arrived at as a limit of conjugate priors.   

Recall that ( x , s2) are jointly sufficient statistics for the parameters. 

 

The joint posterior density  p(µ,σ | x , s2 )  (where s2 = Σ(xi - x )2/(n-1))   

is proportional to    σ-(n+1) exp[-n(µ−x )2/2σ2 – (n-1)s2/2σ2] dµdσ 

which can be described as follows in terms of the equivalent pair (µ,σ2) 

    p(µ | σ2, x , s2) is Normal N( x , σ2/n)  

and    p(σ2| x , s2) is Inverse Gamma Γ([ 2
1−n ], [ 2

1−n ]s2) 
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Recall that, by integrating out s from the joint posterior,   p(µ | x , s2) is such 

that,   √n(µ- x )/s has a Student’s t-distribution with n-1 d.f. 

 

Let θ = µ/σ and transform the joint posterior p(µ,σ | x , s2 ) to the joint posterior 

for the equivalent pair (θ, σ): 

  p(θ, σ | x , s2 )  ∝  σ-n exp[-nθ2/2 + nθx /σ - R2/2σ2] dθdσ 

where R2 = Σ 2
ix .   

 

Integrate-out σ (again!) to give the marginal posterior  

   p(θ | x)  ∝   exp[-nθ2/2] ωθωωω drn ]exp[ 2
2
1

0
2 +−∫

∞ −   =  g(θ, r) (*) 

where r = (n/n-1) x /s2.   Thus, p(θ | x)  depends solely on the data through (r,n). 
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The distribution of r, likewise depends solely on θ, given the ancillary n. (See 

Stone & Dawid, 1972 for the details) 

    

p(r |θ,σ)  ∝  exp[-nθ2/2](1- r2/n)(n-3)/2 ωθωωω drn ]exp[ 2
2
1

0
1 +−∫

∞ −    (**) 

 

However, we cannot write g(θ, r) = p(r |θ,σ) h(θ) for any prior h on θ.   

That is, we cannot interpret (*) as a Bayesian posterior for θ, given the data r, its 

likelihood (**), and some prior h on θ. 

 

However, if we compute p(θ | x)  using the improper prior dµdσ/σ2, no such 

anomaly arises.  Of course, this is a “change” in the prior matching the Jacobian 

of the transformation from (µ, σ) to (θ, σ).   
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Summary 

(1) In general, it is not valid to “integrate-out” random variables from proper 

posterior distributions that are based on improper prior distributions.  Just 

when this is allowed depends upon the details of the (merely) finitely 

additive probability that the improper prior represents.  The theory of 

finitely additive probability does not yet offer a transparent answer when 

integration over improper priors is permitted. 

(2) This is a controversial point:  In general, familiar mathematical rules for 

manipulating transformations of a proper joint posterior density may not 

apply when that posterior is the result of an improper prior. That is, even 

when integrating out a (nuisance) parameter is warranted in a particular 

problem, how to do this when equivalent parameters are used is not settled!  
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