
Statistical Approaches to Learning and Discovery

Latent Variable Time Series Models

Zoubin Ghahramani & Teddy Seidenfeld
zoubin@cs.cmu.edu & teddy@stat.cmu.edu

CALD / CS / Statistics / Philosophy
Carnegie Mellon University

Spring 2002

Modeling time series

Sequence of observations:
y1,y2,y3, . . . ,yt

For example:

• Sequence of images

• Kinematic variables

• Speech signals

• Stock prices

• Sensor readings from an industrial process

• Amino acids, etc. . .

Goal: To build a model M of the data

Markov models

First-order Markov model:

P (y1,y2, . . . ,yt) = P (y1)P (y2|y1) · · ·P (yt|yt−1)

Y3
�Y1 Y2

� YT
�

Second-order Markov model:

P (y1, . . . ,yt) = P (y1)P (y2|y1) · · ·P (yt|yt−2,yt−1)

Causal structure and “hidden variables”

X 3
�

Y3
�

X 1

Y1

X 2
�

Y2
�

X T
�

YT
�

Speech recognition:

• x - underlying phonemes or words

• y - acoustic waveform

Vision:

• x - object identities, poses, illumination

• y - image pixel values

Industrial Monitoring:

• x - current state of molten steel in caster

• y - temperature and pressure sensor readings

Two frequently-used tractable models:

• Linear-Gaussian state-space models

• Hidden Markov models

Linear-Gaussian State-space models (SSMs)

X 3
�

Y3
�

X 1

Y1

X 2
�

Y2
�

X T
�

YT
�

P (x1:T ,y1:T) = P (x1)P (y1|x1)
T∏
t=2

P (xt|xt−1)P (yt|xt)

where xt and yt are both real-valued vectors

Output equation: yt,i =
∑
j

Cij xt,j + vt,i

which is, in matrix form: yt = Cxt + vt

State dynamics equation: xt = Axt−1 + wt

where v and w are uncorrelated zero-mean Gaussian noise vectors.

These models are a.k.a. stochastic linear dynamical systems, Kalman filter models.

From Factor Analysis to State Space Models

YDY1 Y2
�

X1 KX

Λ

Linear generative model:

yi =
K∑
j=1

Cij xj + vi

• xj are independent N (0, 1) Gaussian factors
• vi are independent N (0,Ψii) Gaussian noise
• K<D
State-space models are a dynamical generalization of factor analysis where xt,j can
depend linearly on xt−1,`. Also, possibly K ≥ D and Ψ not diagonal.

State Space Models with Control Inputs

U1 U2 U3 U4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Inputs (or controls) ut, can also be accommodated.
State dynamics equations:

xt = Axt−1 +But−1 + wt.

Output equations:
yt = Cxt +Dut + vt.

demo here...

Three Inference Problems

X 3
�

Y3
�

X 1

Y1

X 2
�

Y2
�

X T
�

YT
�

Filtering:
P (xt|y1, . . . ,yt)

Smoothing:
P (xt|y1, . . . ,yt+∆t)

Prediction:
P (xt|y1, . . . ,yt−∆t)

A very simple idea: running averages

x̂t =
1
t

t∑
τ=1

yτ

x̂t−1 =
1

t− 1

t−1∑
τ=1

yτ

x̂t =
(
t− 1
t

)
x̂t−1 +

1
t
yt

x̂t = x̂t−1 +
1
t
(yt − x̂t−1)

we can call Kt = 1
t the “Kalman gain”

The Kalman Filter

X 3
�

Y3
�

X 1

Y1

X 2
�

Y2
�

X T
�

YT
�

P (xt|y1:t) =
∫
P (xt,xt−1|y1:t) dxt−1

=
∫
P (xt,xt−1,yt|y1:t−1)

P (yt|y1:t−1)
dxt−1

∝
∫
P (xt−1|y1:t−1)P (xt|xt−1,y1:t−1)P (yt|xt,xt−1,y1:t−1) dxt−1

=
d-separation

∫
P (xt−1|y1:t−1)P (xt|xt−1)P (yt|xt) dxt−1

This is a forward recursion based on Bayes rule.

The Kalman Filter

X 3
�

Y3
�

X 1

Y1

X 2
�

Y2
�

X T
�

YT
�

Notation: xτt ≡ E[xt|y1, . . . ,yτ]

Prediction: xt−1
t = Axt−1

t−1

Correction: xtt= xt−1
t +Kt(yt − Cxt−1

t)

Kalman gain: Kt = V t−1
t C>(CV t−1

t C> +R)−1

Prediction variance: V t−1
t = AV t−1

t−1 A
> +Q

Corrected variance: V tt = V t−1
t −KtCV

t−1
t

To get these we need the Gaussian integral:
∫

exp
{
−1

2(x− µ)>Σ−1(x− µ)
}
dx = |2πΣ|

and the Matrix Inversion Lemma: (X + yZy>)−1 = X−1 −X−1y(Z−1 + y>X−1y)−1y>X−1

assuming X and Z are symmetric and invertible.

The Kalman Smoother

X 3
�

Y3
�

X 1

Y1

X 2
�

Y2
�

X T
�

YT
�

Compute P (xt|y1, . . . ,yT), T > t.

Additional backward recursion:

Jt = V tt A
>(V tt+1)−1

xTt = xtt + Jt(xTt+1 −Axtt)

V Tt = V tt + Jt(V Tt+1 − V tt+1)Jt>

Control Inputs and Forward Models

U1 U2 U3 U4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

State equation:
xt+1 = Axt +But + wt

Output equation:
yt = Cxt +Dut + vt

Internal (Forward/Generative) Model:

xt+1 = Âxt + B̂ut + wt

yt = Ĉxt + D̂ut + vt

Kalman Filters: An Example from Biology/Robotics

For example:

• ut motor commands sent to the arm (efference copy sent back to brain)

• xt true state of the hand (pos, vel of hand)

• yt proprioceptive signals (sensor readings)

A forward model of the dynamics of the system can be used in a Kalman filter to
integrate efference copy (u) and sensory signals (y) to obtain an estimate of x.

A forward model can also be used for

• prediction

• mental simulations

• learning a controller

Learning using EM

Assume a model parameterised by θ = {A,B,C,D,Q,R} with observable variables
y and hidden variables x

Goal: maximise log likelihood of parameters given observed data:

L(θ) = lnP (y|θ) = ln
∫
dx P (x,y|θ)

• E-step: infer P (x|y, θold)

• M-step: find θnew using using “filled-in” values for the sufficient statistics of x

The E-step requires solving the inference a.k.a. state estimation problem: finding
a distribution over explanations, x, for the data, y, given the current model
parameters, θ.

Learning SSM using batch EM

X 3
�

Y3
�

X 1

Y1

X 2
�

Y2
�

X T
�

YT
�

Any distribution Q(x) over the hidden states defines a lower bound on lnP (y|θ) called F(Q, θ):

lnP (y|θ) = ln

∫
dxQ(x)

P (x, y|θ)
Q(x)

≥
∫
dxQ(x) ln

P (x, y|θ)
Q(x)

= F(Q, θ)

E-step: Maximise F w.r.t. Q with θ fixed: Q∗(x) = P (x|y, θ)

M-step: Maximize F w.r.t. θ with Q fixed.

P (x,y|θ) = P (x1)
T∏
t=1

P (yt|xt)
T−1∏
t=1

P (xt+1|xt)

M-step boils down to solving a few weighted least squares problems.

Quadratics and Weighted Least Squares

Example: M-step for C using P (yt|xt) ∝ exp
{
−1

2(yt − Cxt)>R−1(yt − Cxt)
}

:

Cnew = argmax
C

〈∑
t

lnP (yt|xt)
〉
Q

= argmax
C

〈
−

1

2

∑
t

(yt − Cxt)
>
R
−1

(yt − Cxt)

〉
Q

+ const

= argmin
C

{∑
t

yt
>
R
−1yt − 2yt

>
R
−1
C〈xt〉+ 〈xt>C>R−1

Cxt〉
}

= argmin
C

{
−2tr

[
C
∑
t

〈xt〉yt>R−1

]
+ tr

[
C
>
R
−1
C

〈∑
t

xtxt
>

〉]}

using ∂tr[AB]
∂A = B>, we get:

∂{·}
∂C

= −2R
−1
∑
t

yt〈xt〉+ 2R
−1
C

〈∑
t

xtxt
>

〉

Solving, we get: Cnew =

(∑
t

yt〈xt〉
)(∑

t

〈
xtxt

>
〉)−1

Nonlinear Dynamical Systems

U1 U2 U3 U4

X1 X2 X3 X4

Y1 Y2 Y3 Y4

xt+1 = f(xt,ut) + wt

yt = g(xt,ut) + vt

The Extended Kalman Filter: linearise about the current estimate, i.e. xtt,ut:

xt+1 ≈ f(xtt,ut) +
∂f

∂xt

∣∣∣∣
xtt

(xt − xtt) + wt

yt ≈ g(xtt,ut) +
∂g

∂xt

∣∣∣∣
xtt

(xt − xtt) + vt

Run the Kalman filter (smoother) on linearised system:

• No guarantees

• Approximates non-Gaussian by a Gaussian

• Works OK in practice, for approx linear systems

EM for nonlinear dynamical systems in (Ghah. & Roweis, 1999)

Learning (Online Gradient)

We can recursively compute the log likelihood of each new data point as it arrives:

L =
T∑
t=1

lnP (yt|y1, . . . ,yt−1) =
T∑
t=1

`t

`t = −p
2

ln 2π − 1
2

ln |Σ| − 1
2

(yt − Cxt−1
t)>Σ−1(yt − Cxt−1

t)

where p is dimension of y, and:

xt−1
t = Axt−1

t−1

Σ = CV t−1
t C> +R

V t−1
t = AV t−1

t−1 A
> +Q

Differentiate this to obtain gradient rules for A,C,Q,R.
Learning rate allows for modelling nonstationarity.

Learning (Online EKF)

Augment state vector to include the model parameters

x̃t = [xt, A, C]

x̃t+1 = f(x̃t) + noise

Use EKF to compute online E[x̃t|y1, . . . ,yt] and Cov[x̃t|y1, . . . ,yt].

• Pseudo-Bayesian approach.

• Deals with nonstationarity by controlling the noise added to A,C.

• Not clear that it works for Q and R (e.g. how does it deal with covariance
constraints?).

• Faster than gradient approaches.

A.k.a. “joint-EKF” approaches. Also available is the “dual-EKF” approach.

HMM: Outline

• Generative Model

S 3
�

Y3
�

S 1

Y1

S 2
�

Y2
�

S T
�

YT
�

• Likelihood Evaluation

• State inference
st

at
es

timeα β

• Parameter Estimation

lik
el

ih
oo

d

parameter space

Graphical Model for HMM

x1

y1 y2

x2 x3

y3

xt

yt

• Discrete hidden states st ∈ {1 . . . ,K}, and outputs yt (discrete or continuous).
Joint probability factorizes:

P(s1, . . . , sT ,y1 . . . ,yT) = P(s1)P(y1|s1)
T∏
t=2

P(st|st−1)P(yt|st)

• a Markov chain with stochastic measurements:

x1

y1 y2

x2 x3

y3

xt

yt

• or a mixture model with states coupled across time:

x1

y1 y2

x2 x3

y3

xt

yt

HMM Generative Model

S 3
�

Y3
�

S 1

Y1

S 2
�

Y2
�

S T
�

YT
�

1. Use a 1st-order Markov chain to generate a hidden state sequence (path):

P(s1 = j) = πj P(st+1 = j|st = i) = Tij

2. Use a set of output prob. distributions Aj(·) (one per state) to convert this state
path into a sequence of observable symbols or vectors

P(yt = y|st = j) = Aj(y)

• Even though hidden state seq. is 1st-order Markov, the output process may not
be Markov of any order

• Discrete state, discrete output models can approximate any continuous dynamics
and observation mapping even if nonlinear; however lose ability to interpolate

Probability of an Observed Sequence

• The probability is:
∑

all paths

P(observed outputs | state path)P(state path)

which looks like an extremely hard computation because the number of possible
paths grows exponentially with number of time steps τ (#paths = Nτ)

• But: there exists a forward recursion to compute the sum efficiently.
Define αj(t):

αj(t) = P(y1 . . .yt , st = j)
Now induction comes to our rescue:

αj(1) = πjAj(y1) αk(t+ 1) =

∑
j

αj(t)Tjk

Ak(yt+1)

This enables us to compute the likelihood efficiently in O(τN2)

L =
K∑
k=1

αk(τ) = P(y1 . . .yτ)

Bugs on a Grid

• Naive algorithm:

1. start bug in each state at t=1 holding value 1
2. move each bug forward in time: make copies of each bug to each subsequent

state & multiply the value of each copy by transition prob. × output emission
prob. (or use logs)

3. go to 2 until all bugs have reached time τ
4. sum up values on all bugs

st
at

es

time

• Clever recursion:
adds a step between 2 and 3 above which says: at each node, replace all the
bugs with a single bug carrying the sum of their values

st
at

es

timeα

Thanks to Sam Roweis for bugs analogy

Forward–Backward Algorithm

• If we knew the total prob. of all paths going through state i at time t we could
compute the conditional prob. of being in state i at time t given the data:

γi(t) ≡ P(st = i | y1...τ) =
P(st = i,y1...t)P(yt+1...τ | st = i)

P(y1...τ)
=
αi(t) βi(t)

L

• where there is a simple recursion for

βj(t) ≡ P(yt+1...τ | st = j) =
∑
i

Tijβi(t+ 1)Ai(yt+1)

• αi(t) gives total inflow of prob. to node (t, i);
βi(t) gives total outflow of prob. st

at
es

timeα β

• Bugs again: we just let the bugs run forward from time 0 to t and backward
from time τ to t.

Baum-Welch Training

1. Intuition: if only we knew the true state path then ML parameter estimation
would be trivial (count co-occurences to get π vector and T and A matrices)

2. But: we can estimate the state path using a trick similar to the one above.

3. What if: we estimate the states, then compute params, then re-estimate states,
etc . . .

4. This works and we can prove that it always improves likelihood. This is the
Baum-Welch algorithm and it is a special case of the EM algorithm.

lik
el

ih
oo

d

parameter space

However: we can also prove that finding the ML parameters is NP complete, so
initial conditions matter a lot and convergence is hard to tell.

Viterbi Decoding

• The numbers γj(t) above gave the prob. distribution over all states at any time.

• By choosing the state γ∗(t) with the largest prob. at each time, we can make a
“best” state path. This is the path with the maximum expected number of
correct states.

• But it is not the single path with the highest likelihood of generating the data.
In fact it may be a path of prob. zero!

• To find the single best path, we do Viterbi decoding which is just Bellman’s
dynamic programming algorithm applied to this problem.

• The recursions look the same, except with max instead of
∑

.

• Bugs once more: same trick except at each step kill all bugs but the one with
the highest value at the node.

• There is also a modified Baum-Welch training based on the Viterbi decode.

New parameters are just ratios of frequency counts

• The initial state distribution is the expected number of times in state i at t = 1:

π̂i = γi(1)

• The expected number of transitions from state i to j which begin at time t is:

ξij(t) ≡ P(st = i, st+1 = j|y1...τ) = αi(t)TijAj(yt+1)βj(t+ 1)/L

so the estimated transition probabilities are: T̂ij =
τ−1∑
t=1

ξij(t)

/
τ−1∑
t=1

γi(t)

• The output distributions are the expected number of times we observe a

particular symbol in a particular state: Âj(y) =
∑
t:yt=y

γj(t)

/
τ∑
t=1

γj(t)

(or the state-probability weighted mean and variance for a Gaussian model).

Using HMMs for Recognition

• Use many HMMs for recognition by:

1. training one HMM for each class (this requires labelled training data)
2. evaluating the probability of an unknown sequence under each HMM
3. classifying the unknown sequence by the HMM which gave it the highest

likelihood

L1 L2 Lk

• This requires the solution of two problems:

1. Given model, evaluate prob. of a sequence. (We can do this exactly and
efficiently.)

2. Give some training sequences, estimate model parameters. (We can find a
local maximum of parameter space using EM.)

HMM Practicalities

• Numerical scaling: the probability values that the bugs carry get tiny for big
times and so can easily underflow. Good rescaling trick:

ρt = P(yt|y1...t−1) α(t) = α̃(t)
t∏

t′=1

ρt′

• Multiple observation sequences: can be dealt with by averaging numerators and
averaging denominators in the ratios given above.

• Training data requirements: full covariance matrices in high dimensions or
discrete symbol models with many symbols have lots of parameters.

• How do we pick the topology of the HMM? How many states?

HMM Example

• Character sequences (discrete outputs)

−
*

9

A B C D E
F GH I J

K L M N O

P Q R ST
U V WX Y

−
*

9

AB C D E

F G H IJ

K L M N O
P Q R S T

U V W X Y

−

*

9

A BCD E

F G H I J

K L MNO

P Q R ST
UVWX Y

−

*

9

AB C D E
F G H I J

K L M N O

P Q R ST
U V W X Y

Relationship to LDSs

• Kalman filter models (linear dynamical systems with Gaussian noise) are exactly
the continuous state analogue of Hidden Markov Models.

S 3
�

Y3
�

S 1

Y1

S 2
�

Y2
�

S T
�

YT
�

• forward algorithm ⇔ Discrete Kalman Filter
forward-backward ⇔ Kalman Smoothing
Viterbi decoding ⇔ no equivalent

Strengths and Weaknesses

• Continuous vector state is very powerful.
(For an HMM to communicate N bits of information into future, it needs 2N

states!)
S 3

�

Y3
�

S 1

Y1

S 2
�

Y2
�

S T
�

YT
�

• Linear-Gaussian output/dynamics are very weak.
(e.g. even using a mixture of Gaussians in place of single Gaussians is tricky)
HMMs can represent arbitrary stochastic dynamics and output mappings.

Some Extensions

• Constrained HMMs

1 64

1

64

• Continuous state models with discrete outputs for time series and static data

• Hierarchical HMMs

• Hybrid systems ⇔ Mixed continuous & discrete states, switching state-space
models

Factorial Hidden Markov Models
and Dynamic Bayesian Networks

S(1)
�

t
�

S(2)
�

t
�

S(3)
�

t
�

Yt
�

S(1)
�

t+1
�

S(2)
�

t+1
�

S(3)
�

t+1
�

Yt+1
�

S(1)
�

t-1
�

S(2)
�

t-1
�

S(3)
�

t-1
�

Yt-1
�

At

Dt

Ct

Bt

At+1

Dt+1

Ct+1

Bt+1

...

At+2

Dt+2

Ct+2

Bt+2

• These are hidden Markov models with many state variables (i.e. a distributed
representation of the state).

• The state can capture many more bits of information about the sequence (linear
in the number of state variables).

• E step is intractable, but we can use sampling or variational methods.

Factorial Hidden Markov Models: An Toy Example

HMM 3HMM 1 HMM 2

1 2 3

1

2

3

1/2 1/3 1/2

1/2

1/2 1/3

1/3

1 1

1

1/2

1/2

1/2

1/2

1

Greyscale image

HMM 1 HMM 2 HMM 3a)

b) c)�

HMM 3

HMM 1

HMM 2

To

From

• Three parallel HMMs: (1) random walk, (2) cyclical, (3) absorbing

• Each HMM had 3 hidden states and 9 outputs

• Data set of 100 sequences of 8 observables each

• EM run for 20 iterations.

Factorial HMMs: Modeling J.S. Bach’s Chorales

Discrete event sequences:

Attribute Description Representation
pitch pitch of the event int [0, 127]
keysig key signature of the chorale

(num of sharps and flats)
int [−7, 7]

timesig time signature of the chorale int (1/16 notes)
fermata event under fermata? binary

st start time of event int (1/16 notes)
dur duration of event int (1/16 notes)

66 chorale melodies of 40 events each:

• training: 30 melodies

• validation: 18 melodies

• test: 18 melodies

See Conklin and Witten (1995) for data and a more musically informed model.

Factorial HMMs: Results on Bach Chorales

0 20 40 60 80
−10

−9

−8

−7

−6

−5

−4

Size of state space

V
al

id
at

io
n

se
t l

og
 li

ke
lih

oo
d

HMM model of Bach Chorales

10
1

10
2

10
3

−10

−9

−8

−7

−6

−5

−4
Factorial HMM Model of Bach Chorales

HMM Pseudocode: Inference (E step)

Forward-backward including scaling tricks

qj(t) = Aj(yt)

α(1) = π. ∗ q(1) ρ(1) =
∑

α(1) α(1) = α(1)/ρ(1)

α(t) = (T ′ ∗ α(t− 1)). ∗ q(t) ρ(t) =
∑

α(t) α(t) = α(t)/ρ(t) [t = 2 : τ]

β(τ) = 1

β(t) = T ∗ (β(t+ 1). ∗ q(t+ 1)/ρ(t+ 1) [t = (τ − 1) : 1]

ξ = 0

ξ = ξ + T. ∗ (α(t) ∗ (β(t+ 1). ∗ q(t+ 1))′)/ρ(t+ 1) [t = 1 : (τ − 1)]

γ = (α. ∗ β)

log P(yτ1) =
∑
t

log(ρ(t))

HMM Pseudocode: Parameter Re-estimation (M step)

Baum-Welch parameter updates:

For each sequence, run forward–backward to get γ and ξ, then

δj = 0 T̂ij = 0 π̂ = 0 Â = 0

T̂ = T̂ + ξ π̂ = π̂ + γ(1) δ = δ +
∑
t

γ(t)

Âj(y) =
∑
t:yt=y

γj(t) or Â = Â+
∑
t

ytγ(t)

T̂ij = T̂ij/
∑
k

T̂kj π̂ = π̂/
∑

π̂ Âj = Âj/δj

Some HMM History

• Markov (’13) and later Shannon (’48,’51) studied Markov chains.

• Baum and colleagues (BP’66, BE’67, BS’68, BPSW’70, B’72) developed much
of the theory of “probabilistic functions of Markov chains”.

• Viterbi (’67) (now Qualcomm) came up with an efficient optimal decoder for
state inference.

• Applications to speech were pioneered independently by:

– Baker (’75) at CMU
– Jelinek’s group (’75) at IBM (now Hopkins)
– communications research division of IDA (Ferguson ’74 unpublished)

• Dempster, Laird & Rubin (’77) recognized a general form of the Baum-Welch
algorithm and called it the EM algorithm.

Some References for LDS

Available at: www.cs.cmu.edu/∼zoubin/papers.html

• Ghahramani, Z. and Hinton, G.E. (1996) Parameter estimation for linear
dynamical systems. University of Toronto Technical Report CRG-TR-96-2, 6
pages (short note).

• Roweis, S. and Ghahramani, Z. (1999) A Unifying Review of Linear Gaussian
Models. Neural Computation 11(2):305–345.

• Roweis, S. and Ghahramani, Z. (2000) An EM Algorithm for Identification of
Nonlinear Dynamical Systems. Preprint

• Welling (2000) The Kalman Filter (class notes). Available at:
www.vision.caltech.edu/welling/class/KalmanFilter.ps

