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Roles for Statistical Models 

• Data Reduction and factorization of the likelihood function. 

��Sufficient Statistics 

��Ancillary Statistics 

 

• Symmetry and Independence assumptions 

o deFinetti’s theorem on exchangeable sequences 

 

• Properties of Maximum Likelihood 
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Data Reduction Concepts for Statistical Models 
 
Defn:  The (dimensional) random variable Y = g(X) is sufficient for the parameter θ 

(with respect to X)      iff     

P(X | Y, θ) = P(X |Y), independent of θ. 

  

Theorem: The likelihood for θ given a sufficient (set of) statistic(s) Y is the same as 

the likelihood for θ given the (dimensional) variable X for which Y is sufficient. 

Proof:   P(x | θ)  = P(x, y | θ)      as Y = g(X)  

     = P(x | y, θ) P(y |θ) multiplication axiom 

     = P(x | y) P(y | θ)    by sufficiency of Y 

     ∝  P(y | θ)   
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Corollary (Factorization of the likelihood function): 

 Y = g(X) is sufficient for the parameter θ (with respect to X)      iff     

The likelihood (probability or density) function can be written as the product of two 

functions of this form: 

P(X | θ) = h(X) j(Y,θ). 

 

Recall:  Y = g(X) 
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Example 1 (coin-tossing, again): 

 X = <X1, …, Xn> are iid Bernoulli trials given θ, with P(X1=1|θ) = θ, 0 < θ < 1. 

 Claim:   g(X) = Y = <∑i Xi, n-∑i Xi > is a sufficient reduction  

to the two statistics, #1’s = ∑i Xi = k and #0’s = n-k in the sequence X.  

Proof:   P(x,y | θ) = P(x | θ) = θk (1-θ)n-k 

   P(y | θ) = 
n

k
C θk (1-θ)n-k 

 Thus P(x | y, θ) = P(x,y | θ) / P(y | θ) = P(x | y) = k!(n-k)!/n! 
 
That is, P(X | y, θ) is a discrete, uniform distribution over all sequences Hn that begin 

with k 1’s and (n-k) 0’s, independent of θ.  
 
Or, use factorization and note that, alternatively < X ,n> are sufficient for θ as  

P(X | θ) = θn X (1-θ)n(1- X ) = h(X) j(Y,θ) 

where h(X) = 1 and Y = X = ∑iXi/n. 
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Example 2 (Normal distribution, known variance): 
X = <X1, …, Xn> are iid normal N(µ,1) trials. 

Claim:  The pair < X ,n> is sufficient for µ. 

Proof:  Write p(X |µ) =   

(2π)-n/2 exp( -∑i(Xi - X )2 / 2) exp(-n(µ - X )2 / 2), 

where    (2π)-n/2 exp( -∑i(Xi - X )2 / 2) exp(-n(µ - X )2 / 2) 

       ⇑          ⇑       

          h(X)      j(Y,θ)  
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Defn:  The (dimensional) random variable Y = g(X) is ancillary for the parameter θ 

(with respect to X)      iff     

P(Y | θ) = P(Y), independent of θ. 

  

Theorem: The likelihood for θ based on an ancillary (set of) statistic(s) Y is constant. 

Corollary: The likelihood for θ based on X equals the conditional likelihood for θ  

based on X, given Y. 

    P(x | θ) = P(x | y, θ) 

Proof:   P(x | θ)  = P(x, y | θ)  =  P(x | y, θ) P(y | θ) 

        ∝   P(x | y, θ). 



 7

Example 3 (coin-tossing, again): 

 X = <X1, …, Xi,…> are iid Bernoulli trials given θ, with P(X1=1|θ) = θ, 0 < θ < 1.

 g(X) = Y = <∑i Xi, n-∑i Xi > is a sufficient reduction for inference about θ. 

 
Version 3a:  The stopping rule is sample to a fixed sample size n.  Then N (sample size) 
is ancillary ( P(N=n) = 1) and, given N = n, ∑i Xi is sufficient! 

Moreover, P(∑i Xi | n, θ) is given by the Binomial(n, θ) distribution. 
 
Version 3b: The stopping rule is sample to a fixed number of “heads,” say ∑i Xi = k  

Then ∑i Xi (number of heads) is ancillary ( P(∑i Xi = k ) = 1) and, given ∑i Xi = k , the 
number of flips N is sufficient! 
Moreover, P(N | k, θ) is given by the Neg-Binomial(k, θ) distribution.  
 
However, regardless of the stopping rule, in either version, the pair <∑i Xi, N > is 
sufficient! 
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Recapitulation of data-reduction principles for statistical models 
   
Sufficiency principle:  A sufficient statistic preserves all the relevant information about  

the parameter that is in the full data set  
 
Ancillarity principle:  All the relevant information in the data set about the parameter is  

contained in the conditional model, given the ancillary statistic. 
 
Likelihood principle: All the relevant information in the data set about the parameter is  

contained in the likelihood function given the data. 
 
Birnbaum’s Theorem:  The Likelihood principle is equivalent to the conjunction of the  

Sufficiency and Ancillarity principles. 
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Identifying statistical models by symmetry & independence involving observables 
(deFinetti’s Theorem) 

 
Heuristic Example (coin-tossing yet again!):  Let X = <X1, …, Xi,…> be an infinite 

sequence of binary trials, with the σ-algebra (�) of events generated by the observable 
“historical” events Hn: <x1, …, xn, {0,1}, {0,1}, …>. 

 
Defn: Say that a probability P over � is: 

• 1-exchangeable if for ∀ (i,j) P(Xi = 1) = P(Xj = 1) 
 
• 2-exchangeable if ∀ (i1,i2,distinct and j1, j2 distinct)  

P(Xi1= x1, Xi2= x2)  =  P(Xj1= x1, Xj2= x2)  
 

• n-exchangeable if ∀ (i1,i2, …,in distinct) 
P(Xi1=x1, Xi2=x2, …, Xin=xn)  does not depend on the n distinct <i1,i2,…,in> 

 
• exchangeable if P is n-exchangeable for each n (n = 1, 2, …). 
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Theorem (deFinetti):  P is exchangeable if and only if P can be written as 

P(E) = ∫ΘP(E | θ) dQ(θ) 

where  

• P(� | θ) is given by iid Bernoulli(θ) trials  

• Q(θ) is a prior probability distribution over Θ determined uniquely by P over �.  

 
Thus, one can use the computational benefits of sampling from an iid statistical 
model, “as if” it were true, given suitable exchangeability (symmetry) assumptions 
involving only the algebra of the observable random variables.  

 
Remarks:   

• This important theorem generalizes to cover both discrete and continuous random 
variables.   

• Also, there is version dealing with finite sequences (N-exchangeability). 
• For a thorough discussion of all this, see chapter 1 of Mark Schervish’s book, 

Theory of Statistics, 1995. Springer-Verlag.   
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Data reduction, Fisher-Information, and Maximum Likelihood 
 

Defn.: Score function:   SX (θ) = ∂ (ln p(X | θ))     
          ∂θ�
 

Fisher Information    (under general conditions)  
 

IX (θ)  =  Var (SX(θ)) = E[-∂2(ln p(X |�)) ].    

     ∂θ2 
 

•  Fisher Information is additive for independent data. 

• IX(θ)  = IY(θ)  whenever Y is sufficient for θ (with respect to X). 

• Fisher Information is a differential form of Kullback-Leiber information. 
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Defn.:  Let �* denote the argmax of the likelihood function p(X | �), 

the maximum likelihood estimate (MLE) of the parameter. 

 
Main Theorem (under general regularity conditions on the statistical model): 
      

P(�* | �0)  ≈  N(�0, [IX(�*)]-1)  =  N(�0, [nIXi(�*)]-1) 

 
So (under “regularity” conditions) the MLE: 

• Has an asymtotic Normal distribution. 

• Is asymptotically consistent (converges to �0). 

• Is asymptotically sufficient. 

 


