Roles for Statistical Models

- Data Reduction and factorization of the likelihood function.
 - Sufficient Statistics
 - Ancillary Statistics
- Symmetry and Independence assumptions

o deFinetti's theorem on *exchangeable sequences*

• Properties of *Maximum Likelihood*

Data Reduction Concepts for Statistical Models

<u>*Defn*</u>: The (dimensional) random variable $Y = \mathbf{g}(X)$ is *sufficient* for the parameter θ (with respect to *X*) *iff*

$$\mathbf{P}(X \mid Y, \theta) = \mathbf{P}(X \mid Y)$$
, independent of θ .

Theorem: The likelihood for θ given a sufficient (set of) statistic(s) *Y* is the same as the likelihood for θ given the (dimensional) variable *X* for which *Y* is sufficient.

Proof: $\mathbf{P}(x \mid \theta) = \mathbf{P}(x, y \mid \theta)$ as $Y = \mathbf{g}(X)$ = $\mathbf{P}(x \mid y, \theta) \mathbf{P}(y \mid \theta)$ multiplication axiom = $\mathbf{P}(x \mid y) \mathbf{P}(y \mid \theta)$ by sufficiency of Y $\propto \mathbf{P}(y \mid \theta)$ *Corollary* (Factorization of the likelihood function):

 $Y = \mathbf{g}(X)$ is *sufficient* for the parameter θ (with respect to X) *iff*

The likelihood (probability or density) function can be written as the product of two functions of this form:

 $\mathbf{P}(X \mid \theta) = \boldsymbol{h}(X) \, \boldsymbol{j}(Y, \theta).$

Recall: $Y = \mathbf{g}(X)$

Example 1 (coin-tossing, again):

 $X = \langle X_1, \dots, X_n \rangle$ are *iid* Bernoulli trials given θ , with $P(X_1 = 1 | \theta) = \theta$, $0 < \theta < 1$.

Claim: $\mathbf{g}(\mathbf{X}) = \mathbf{Y} = \langle \sum_{i} X_{i}, n - \sum_{i} X_{i} \rangle$ is a sufficient reduction to the two statistics, #1's = $\sum_{i} X_{i} = k$ and #0's = n - k in the sequence \mathbf{X} .

Proof:
$$\mathbf{P}(x,y \mid \theta) = \mathbf{P}(x \mid \theta) = \theta^k (1-\theta)^{n-k}$$

 $\mathbf{P}(y \mid \theta) = \bigcap_{k=1}^{n} \theta^k (1-\theta)^{n-k}$
Thus $\mathbf{P}(x \mid y, \theta) = \mathbf{P}(x,y \mid \theta) / \mathbf{P}(y \mid \theta) = \mathbf{P}(x \mid y) = k!(n-k)!/n!$

That is, $P(X | y, \theta)$ is a discrete, uniform distribution over all sequences H_n that begin with *k* 1's and (*n*-*k*) 0's, independent of θ .

Or, use factorization and note that, alternatively $\langle \overline{X}, n \rangle$ are sufficient for θ as $\mathbf{P}(X \mid \theta) = \theta^n \overline{X} (1-\theta)^{n(1-\overline{X})} = \mathbf{h}(X) \mathbf{j}(Y,\theta)$

where h(X) = 1 and $Y = \overline{X} = \sum_i X_i / n$.

Example 2 (Normal distribution, known variance): $X = \langle X_1, ..., X_n \rangle$ are *iid* normal $N(\mu, 1)$ trials.

Claim: The pair $<\overline{X}$, n> is sufficient for μ .

Proof: Write $\mathbf{p}(X | \mu) =$

where

$$(2\pi)^{-n/2} exp(-\Sigma_{i}(X_{i} - \overline{X})^{2}/2) exp(-n(\mu - \overline{X})^{2}/2),$$

$$(2\pi)^{-n/2} exp(-\Sigma_{i}(X_{i} - \overline{X})^{2}/2) exp(-n(\mu - \overline{X})^{2}/2),$$

$$\uparrow \qquad \uparrow$$

$$h(X) \qquad j(Y,\theta)$$

5

<u>*Defn*</u>: The (dimensional) random variable $Y = \mathbf{g}(X)$ is *ancillary* for the parameter θ (with respect to *X*) *iff*

 $\mathbf{P}(Y \mid \theta) = \mathbf{P}(Y)$, independent of θ .

Theorem:The likelihood for θ based on an ancillary (set of) statistic(s) Y is constant.*Corollary*:The likelihood for θ based on X equals the conditional likelihood for θ
based on X, given Y.

 $\mathbf{P}(x \mid \theta) = \mathbf{P}(x \mid y, \theta)$

Proof: $\mathbf{P}(x \mid \theta) = \mathbf{P}(x, y \mid \theta) = \mathbf{P}(x \mid y, \theta) \mathbf{P}(y \mid \theta)$

 $\propto \mathbf{P}(x \mid y, \theta).$

Example 3 (coin-tossing, again):

 $X = \langle X_1, \dots, X_i, \dots \rangle$ are *iid* Bernoulli trials given θ , with $P(X_1 = 1|\theta) = \theta$, $0 < \theta < 1$.

 $\mathbf{g}(\mathbf{X}) = \mathbf{Y} = \langle \sum_{i} X_{i}, n - \sum_{i} X_{i} \rangle$ is a sufficient reduction for inference about θ .

<u>Version 3a</u>: The *stopping rule* is sample to a fixed sample size *n*. Then *N* (sample size) is ancillary ($\mathbf{P}(N=n) = 1$) and, **given** N = n, $\sum_i X_i$ is sufficient! Moreover, $\mathbf{P}(\sum_i X_i | n, \theta)$ is given by the *Binomial*(n, θ) distribution.

Version 3b: The *stopping rule* is sample to a fixed number of "heads," say $\sum_i X_i = k$ Then $\sum_i X_i$ (number of heads) is ancillary ($\mathbf{P}(\sum_i X_i = k) = 1$) and, **given** $\sum_i X_i = k$, the number of flips *N* is sufficient! Moreover, $\mathbf{P}(N \mid k, \theta)$ is given by the *Neg-Binomial*(*k*, θ) distribution.

However, regardless of the stopping rule, in either version, the *pair* $<\Sigma_i X_i$, N > is sufficient!

Recapitulation of data-reduction principles for statistical models

Sufficiency principle: A sufficient statistic preserves all the relevant information about the parameter that is in the full data set

Ancillarity principle: All the relevant information in the data set about the parameter is contained in the conditional model, given the ancillary statistic.

Likelihood principle: All the relevant information in the data set about the parameter is contained in the likelihood function given the data.

Birnbaum's Theorem: The *Likelihood* principle is equivalent to the conjunction of the *Sufficiency* and *Ancillarity* principles.

Identifying statistical models by symmetry & independence involving observables (*deFinetti's Theorem*)

Heuristic Example (coin-tossing yet again!): Let $X = \langle X_1, ..., X_i, ... \rangle$ be an infinite sequence of binary trials, with the σ -algebra (**A**) of events generated by the observable "historical" events H_n : $\langle x_1, ..., x_n, \{0,1\}, \{0,1\}, ... \rangle$.

Defn: Say that a probability **P** over **A** is:

- *1-exchangeable* if for \forall (i,j) $\mathbf{P}(X_i = 1) = \mathbf{P}(X_j = 1)$
- 2-exchangeable if $\forall (i_1, i_2, \text{distinct and } j_1, j_2 \text{ distinct})$ $\mathbf{P}(Xi_1 = x_1, Xi_2 = x_2) = \mathbf{P}(Xj_1 = x_1, Xj_2 = x_2)$

• *n*-exchangeable if $\forall (i_1, i_2, ..., i_n \text{ distinct})$

 $\mathbf{P}(Xi_1=x_1, Xi_2=x_2, ..., Xi_n=x_n)$ does not depend on the *n* distinct $\langle i_1, i_2, ..., i_n \rangle$

• *exchangeable* if **P** is *n*-exchangeable for each n (n = 1, 2, ...).

Theorem (deFinetti): **P** is exchangeable if and only if **P** can be written as $\mathbf{P}(E) = \int_{\Theta} \mathbf{P}(E \mid \theta) \, d\mathbf{Q}(\theta)$

where

- $\mathbf{P}(\mathfrak{A} \mid \theta)$ is given by *iid* Bernoulli(θ) trials
- $\mathbf{Q}(\theta)$ is a prior probability distribution over Θ determined uniquely by **P** over \mathfrak{A} .

Thus, one can use the computational benefits of sampling from an *iid* statistical model, "as if" it were true, given suitable exchangeability (symmetry) assumptions involving only the algebra of the observable random variables.

Remarks:

- This important theorem generalizes to cover both discrete and continuous random variables.
- Also, there is version dealing with finite sequences (N-exchangeability).
- For a thorough discussion of all this, see chapter 1 of Mark Schervish's book, *Theory of Statistics*, 1995. Springer-Verlag.

Data reduction, Fisher-Information, and Maximum Likelihood

<u>Defn</u>: Score function: $S_X(\theta) = \frac{\partial (\ln \mathbf{p}(X \mid \theta))}{\partial \theta}$

Fisher Information (under general conditions)

$$I_X(\theta) = \text{Var}(S_X(\theta)) = E[-\partial^2(\ln \mathbf{p}(X|\theta))].$$

 $\partial \theta^2$

- Fisher Information is additive for independent data.
- $I_X(\theta) = I_Y(\theta)$ whenever Y is sufficient for θ (with respect to X).
- Fisher Information is a differential form of Kullback-Leiber information.

Defn.: Let θ^* denote the argmax of the likelihood function $\mathbf{p}(X \mid \theta)$, the *maximum likelihood estimate* (*MLE*) of the parameter.

Main Theorem (under general regularity conditions on the statistical model):

$$\mathbf{P}(\boldsymbol{\theta}^* \mid \boldsymbol{\theta}_0) \approx N(\boldsymbol{\theta}_0, [\mathbf{I}_X(\boldsymbol{\theta}^*)]^{-1}) = N(\boldsymbol{\theta}_0, [n\mathbf{I}_{X_i}(\boldsymbol{\theta}^*)]^{-1})$$

So (under "regularity" conditions) the MLE:

- Has an asymtotic Normal distribution.
- Is asymptotically consistent (converges to θ_0).
- Is asymptotically sufficient.