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Lecture Outline 
 

(1)  Maximum Likelihood and Normal Inference 

• Confidence Intervals based on the MLE 

• Delta Method – useful reparameterizations 

• The curse of dimensionality in terms of nuisance parameters 

 

(2) Failure of the Likelihood Principle with fixed α-level tests 

  

 



 2

Defn.:  Let �* denote the argmax of the likelihood function p(X | �), 

the maximum likelihood estimate (MLE) of the parameter. 

 
Main Theorem (under general regularity conditions on the statistical model): 
 
For large (iid) samples of size n. 
      

P(�* | �0)  ≈  N(�0, [IX(�*)]-1)  =  N(�0, [nIXi(�*)]-1) 

 
where  IX (θ)  =  Eθ[-∂2(ln p(X |�)) ].    

           ∂θ2 
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This leads to the Classical Inference procedure that,  

when ������there is the convenient 95% Confidence Interval based on the MLE: 

CI  = [θ* - 2se,  θ* + 2se] 

where   se = [nIXi
(�*)]-1/2 
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Example – yet more coin flipping 

 

Data:  x = < x1, … , xn > iid  Bernoulli trials Model: P(Xi = 1) = θ,  with θ�����= [0, 1].  

Likelihood function:      P(xn | θ)  = �i P(xi | θ)  

               = �i θxi(1-θ)1-xi          

= θ�ixi (1-�)n-�ixi   

Thus, ln(P(xn | θ)) = Σixiln(θ) + (n-Σixi)ln(1-θ)   and evidently θ* = Σixi/n 

-∂2(ln p(x |�))  =  x/θ2 + (1-x)/(1-θ)2    

      ∂θ2  

IX (θ)  = Eθ[-∂2(ln p(X |θ)) ] = [θ (1- θ)]-1 

      ∂θ2 
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So:       θ* ≈  N(θ,  θ*(1-θ*)/n] 

 

And the 95% Confidence Interval based on the MLE is: 

θ* ±  2[θ*(1-θ*)/n]1/2 

 

But the length of the interval depends upon the parameter.  Can this be controlled? 
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The Delta  Method 
 

When       √n(Y – µ)  ≈  N(0, σ2) 

we have the following good approximation for (differentiable) transformations g(•). 

√n(g(Y) – g(µ))   ≈   N(0, σ2[g′(µ)]2). 

 

We can use this to create variance stabilizing transformations. 

 

In the coin-tossing case,   √n( X  – µ)   ≈  N(0,  θ(1-θ)) 

So, we want a transformation such that   g′(θ) = 1/√[θ(1-θ)],  

with a solution        g(θ)  = 2arcsin(√θ). 

Then    √n( 2arcsin(√ X ) – 2arcsin(√θ) )   ≈  N(0, 1)  

and we may control the length of the interval estimate, independent of θ. 
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Nuisance Parameters and the MLE – the curse of dimensionality  
(Neyman-Scott, 1948) 

 
Let (Xi, Yi) be iid  N(µi, σ2)  (i = 1, 2, ….) 
 

σ2 is the parameter of interest -- common variance,  
the  µi are nuisances -- the unknown means. 

Likelihood function L(µi, σ2) :  

 

And ln(L(µi, σ2)):  
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The MLEs are calculated from this equation by setting first partial derivatives to 0, 

resulting in the MLE estimates: 

 µ*i,n = (Xi +Yi)/2       �2*n = Σi(Xi -Yi)2/4n 

Since      (Xi -Yi)  =  Zi  ~  N(0, 2�2)  

we find that     �2*n  	  �2/2 

The MLE for �2 is inconsistent, converging to the wrong value. 

 

Thus the nice convergence properties of the MLE do not extend (automatically) to the 

case with unlimited numbers of nuisance parameters! 

 

We need consider ways to keep the statistical model finite dimensional. 
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Two approaches to resolving this anomaly 
 

•  Classical (easy!): Reparameterize so that the infinity of nuisance factors are confined 

to one portion of the data, and there are enough data remaining for informative inference 

Transform from  (Xi, Yi)  to the equivalent pair (Zi, Wi)  

where   Zi = (Xi - Yi)  and Wi = (Xi + Yi)  

Zi  ~  N(0, 2σ2) and Wi  ~  N(2µi, 2σ2) then use only the Zi !! 

 

This amounts to a transformation that permits factoring the likelihood function  
P(<Z, W>| σ2, µ1, µ2, …) = P(Z | σ2) P( W | σ2, µ1, µ2, …) 

 
so that one term, P(Z | σ2), involves only a finite- (one-) dimensional statistical model, 

including the parameter of interest   

while the other term, P( W | σ2, µ1, µ2, …) is infinite dimensional. 
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•  Bayes approach – this could be hard: 

 

Complete the Bayes’ model by adding the (possibly infinite dimensional) prior for 

the nuisance factors (µ1, µ2, …) and integrate them out using Bayes’ theorem.   

p(σ2 | <X, Y>) ∝   ∫∫….p(<X, Y>| σ2, µ1, µ2, …)p(µ1, µ2, …|σ2)dP(µ1, µ2, …|σ2) 

 

 

This can become tractable if, for example, the µi can be give a simple (conjugate) 

distribution, e.g., if µi  are iid  N(θ, τ2), which gives the nuisance factors a finite 

dimensional statistical model. 
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Another matter of experimental design 

Let Y ~ N(µ, σ2) with σ2 known. 

A statistical test 
(y) of a simple statistical (null) hypothesis H0: θ = 0 versus the  

alternative hypothesis H1: θ = 1, based on Y  is defined by a  

critical region C, where the null hypothesis is rejected if and only if Y ∈  C. 

•  The prob. of a type-1 error, � = P(C | H0). 

•  The prob. of a type-2 error, � = P(Cc | H1).  
 

By the Neyman-Pearson lemma, for each value of σ2 and a, there exists a Most 

Powerful test of H0 versus the alternative H1. 

 
Question: What becomes of a (Classical Statistical) convention always to choose the 

Most Powerful test with a fixed α-level, say, α = .05? 
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Consider tests based on two different sample sizes, e.g., σ = 4/3 and σ= 1/3. 
With the larger sample size, σ= 1/3, consider tests with (α,β) values 

  Test T1 with operating characteristics (.050, .814). 
  Test T2 with operation characteristics (.070, .766). 

 With the smaller sample size, σ= 4/3, consider tests with (α,β) values 

  Test T3 with operating characteristics (.050, .088). 
  Test T4 with operating characteristics (.030, .131). 

The convention – choose the MP test with a = .05 regardless – has an incoherence 

associated with it exposed by looking at the two mixed tests 

  Test T5 = .5T1 ⊕  .5T3 with operating characteristics (.050, .451). 
   Test T6 = .5T2 ⊕  .5T4 with operating characteristics (.050, .449). 

Thus T5 is inadmissible, as T6 has better power at the same .05 level. 

However, T5 is the mixture of MP .05-level tests.  Thus, the MP .05 level mixed test 

will not be a mixture of .05-level MP tests, and Ancillarity fails with mixed tests!  
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The Bayes analysis of this phenomenon 

The figure below displays the curve of available MP tests in this problem at three values 

of σ: σ = 4/3, = .5, and = 1/3, and the tangents to these curves for tests with α = .05.  

 

The Bayes’ prior for H0 associated with a specific MP test is identified by the tangent to 

the curve at that point on the curve. 

 

In order to be coherent tests chosen at different σ-values must have parallel tangents, 

meaning that they associate with the same (implicit) Bayes’ prior for H0. 

 

In order to keep the tangents parallel (to maintain coherence),  

as sample size increases (as σ decreases), α-levels must decrease as well!
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