|ecture Outline

(1) Maximum Likelihood and Normal Inference
» Confidence Intervals based on the MLE
» Delta Method — useful reparameterizations

* The curse of dimensionality in terms of nuisance parameters

(2) Failure of the Likelihood Principle with fixed a-level tests



Defn.. Let 6* denote the argmax of the likelihood function p(X | 6),
the maximum likelihood estimate (MLE) of the parameter.

Main Theorem (under general regularity conditions on the statistical model):

For large (iid) samples of size n.

P(6* |8g) = N(8g, [Ix(6*)I™) = N(8g, [nix;(6*)]™)

where Iy (8) = Eg[-02(In p(X]0))].
0&



This leads to the Classical Inference procedure that,
when 0 € R thereis the convenient 95% Confidence Interval based on the MLE:
Cl =[06* - 2se, 6* + 2<€]

where se= [nlxi(G*)]'llZ



Example — yet more coin flipping

Data: Xx=< Xy, ..., X, > iid Bernoulli trials Model: P(Xi = 1) =6, with8 € ® =[0, 1].
Likelihood function: P(x,|8) =TIIj P(x | 9)

= I1j 0%i(1-0)1X

= gZiXi (1-9)2iX
Thus, In(P(x, | 8)) = ZixIn(6) + (n-X;%;)IN(1-6) and evidently 8* = Z;xi/n

-02(In p(x [0)) = x/62 + (1-x)/(1-6)2
062

Ix (8) = Eg[-0%(Inp(X|8)) ] =[6 (1- §)]-1
G4




So: 0* = N(O, 6*(1-6*)/n]

And the 95% Confidence Interval based on the MLE is:

0% + 2[0*(1-6*)/n]L2

But the length of the interval depends upon the parameter. Can this be controlled?



The Delta Method
When vn(Y=p) = N(0, g9
we have the following good approximation for (differentiable) transformations g(+).

vn(g(Y) —g(w) = N(O, a2g (W)]?).
We can use this to create variance stabilizing transformations.

In the coin-tossing case, vn(X =) = N(O, 6(1-6))

So, we want a transformation such that g'(0) = UV[6(1-0)],
with a solution g(6) = 2arcsin(V0).
Then vn( 2arcsin(v X) —2arcsin(v0) ) = N(0, 1)

and we may control the length of the interval estimate, independent of ©.



Nuisance Parameters and the MLE — the curse of dimensionality
(Neyman-Scott, 1948)

Let (X, Yi) beiid N(ui, 02) (i=1,2,....)

02 isthe parameter of interest -- common variance,
the pj are nuisances -- the unknown means.
Likelihood function L(uj, 02) :

1

omi® exp{— L2 2106 1) +(y — 14)°T}

And In(L(uj, 02)):

1 i+ 1
—2n|na—P[2iZ(X' ;y _ﬂi)2+§iZ(Xi —yi)Z]



The MLEs are calculated from this equation by setting first partial derivativesto O,
resulting in the MLE estimates:

W i,n = (Xi +Yj)/2 62" n = Zj(Xj -Yj)?/4n
Since (Xi -Yi) = Zj ~ N(0O, 262
we find that c2*n = o2/2

The MLE for c2isinconsistent, converging to the wrong value.

Thus the nice convergence properties of the MLE do not extend (automatically) to the

case with unlimited numbers of nuisance parameters!

We need consider ways to keep the statistical model finite dimensional.



Two approaches to resolving this anomaly

» Classical (easy!): Reparameterize so that the infinity of nuisance factors are confined
to one portion of the data, and there are enough data remaining for informative inference
Transform from (X, Yi) to the equivalent pair (Zj, W)
where Zi=(Xi-Yi) andW =(X +Y))
Zi ~ N(O, 202) and W; ~ N(2ui, 202) then use only the Zj !

This amounts to a transformation that permits factoring the likelihood function

P(<Z, W>| 02, g, My, -..) = P(Z| 02) P(W] 02, Wy, Uy, --.)
so0 that oneterm, P(Z | 62), involves only afinite- (one-) dimensional statistical model,
Including the parameter of interest

while the other term, P(W | 62, [y, W, ...) isinfinite dimensional.



» Bayes approach — this could be hard:

Complete the Bayes model by adding the (possibly infinite dimensional) prior for

the nuisance factors (44, U, .., and integrate them out using Bayes' theorem.

p(02[ <X, ¥>) O [[....p(<X, Y>| 02, lg, Uy ... )P(H1. K. ---|02)dP(Ug. Yy - .. |02)

This can become tractable if, for example, the j can be give a simple (conjugate)
distribution, e.g., if yj areiid N(8, 12), which gives the nuisance factors afinite

dimensional statistical model.
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Another matter of experimental design
Let Y ~ N(u, 02) with a2 known.
A statistical test 5(y) of asimple statistical (null) hypothesis Hy: 6 = 0 versus the
alternative hypothesisH: 0 =1, basedon Y isdefined by a
critical region C, where the null hypothesisisregected if and only if Y [ C.
e The prob. of atype-1 error, oo = P(C | Hp).

» The prob. of atype-2 error, B = P(CC | H).

By the Neyman-Pearson lemma, for each value of 02 and a, there exists a Most

Powerful test of Hp versus the alternative H;.

Question: What becomes of a (Classical Satistical) convention always to choose the

Most Powerful test with afixed a-level, say, a = .05?
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Table 1. The “best” B-values for twelve
o-values and six experiments

o= 250 .333 400 .500 1.000 1.333

o B -values
010 047 250 431 628 .S08 842
020 026 172 327 521 854 604
030 017 131 268 452 811 871
040 012 106 227 4017 773 .84
045 011 086 210 380 756 .828
050 009 088 .196 .361 740 814
055 008 080 .184 344 725 8072
060 007 074 172 328 710 789
070 006 064 153 300 683 .766
080 003 055 137 276 657 744
080 004 049 123 255 H33 722

100 003 043 111 236 611 702




Consider tests based on two different sample sizes, e.g., 0 = 4/3 and o= 1/3.
With the larger sample size, 0= 1/3, consider tests with (a,[3) values

Test T1 with operating characteristics (.050, .814).
Test T2 with operation characteristics (.070, .766).

With the smaller sample size, 0= 4/3, consider tests with (a,[3) values

Test T3 with operating characteristics (.050, .088).
Test T4 with operating characteristics (.030, .131).

The convention — choose the MP test with a= .05 regardless — has an incoherence
associated with it exposed by looking at the two mixed tests

Test T5 = .5T1 [ .5T3 with operating characteristics (.050, .451).
Test T6 = .5T2 [J .5T4 with operating characteristics (.050, .449).

Thus T5 isinadmissible, as T6 has better power at the same .05 level.
However, T5 isthe mixture of MP .05-level tests. Thus, the MP .05 level mixed test
will not be a mixture of .05-level MP tests, and Ancillarity fails with mixed tests!
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The Bayes analysis of this phenomenon
The figure below displays the curve of available MP tests in this problem at three values

of 0: 0 =4/3, =.5, and = 1/3, and the tangents to these curves for tests with a = .05.

The Bayes prior for Hy associated with a specific MP test isidentified by the tangent to

the curve at that point on the curve.

In order to be coherent tests chosen at different o-values must have parallel tangents,

meaning that they associate with the same (implicit) Bayes prior for Hy,.

In order to keep the tangents parallel (to maintain coherence),

as sample size increases (as o decreases), a-levels must decrease as well!
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