
Statistical Approaches to Learning and Discovery

Latent Variable Models

Zoubin Ghahramani & Teddy Seidenfeld
zoubin@cs.cmu.edu & teddy@stat.cmu.edu

CALD / CS / Statistics / Philosophy
Carnegie Mellon University

Spring 2002

The Gaussian Model (review)

p(y|µ,Σ) = |2πΣ|−1
2 exp

{
−1

2
(y − µ)>Σ−1(y − µ)

}
Data set Y = {y1, . . . ,yN};

Likelihood is p(data|model): p(Y |µ,Σ) =
N∏
n=1

p(yn|µ,Σ)

Goal: find µ and Σ that maximise log likelihood:

L = log
N∏
n=1

p(yn|µ,Σ) = −N
2

log |2πΣ| − 1
2

∑
n

(yn − µ)>Σ−1(yn − µ)

Note: equivalently, minimise −L, which is quadratic in µ
Procedure: take derivatives and set to zero:

∂L
∂µ

= 0 ⇒ µ̂ =
1
N

∑
n

yn (sample mean)

∂L
∂Σ

= 0 ⇒ Σ̂ =
1
N

∑
n

(yn − µ̂)(yn − µ̂)> (sample covariance)

Three Limitations of Gaussians

• What about higher order statistical structure in the data?
⇒ nonlinear and hierarchical models

• What happens if there are outliers?
⇒ other noise models

• There are D(D + 1)/2 parameters in the multi-variate Gaussian model.
What if D is very large?

⇒ dimensionality reduction

Y

Y 1

2

Factor Analysis

YDY1 Y2
�

X1 KX

Λ
Linear generative model: yd =

K∑
k=1

Λdk xk + εd

• xk are independent N (0, 1) Gaussian factors
• εd are independent N (0,Ψdd) Gaussian noise
• K<D

So, y is Gaussian with: p(y) =
∫
p(x)p(y|x)dx = N (0,ΛΛ> + Ψ)

where Λ is a D ×K matrix, and Ψ is diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high dimensional
data that captures most of the correlation structure of the data.

Factor Analysis (cont.)

YDY1 Y2
�

X1 KX

Λ

• ML learning finds Λ and Ψ given data

• parameters (corrected for symmetries): DK +D − K(K − 1)
2

<
D(D + 1)

2

• no closed form solution for ML params: N (0,ΛΛ> + Ψ)
• [Bayesian treatment would also have priors over Λ and Ψ and would average over

them for prediction.]

Latent Variable Models

Explain correlations in y by assuming some latent variables x

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

Coding Interpretation of Factor Analysis:
Coding Under a Gaussian

Remember, from Shannon’s source coding theorem:

l(x) = − logP (x) ≈ − log[p(x)∆] = − log p(x)− log ∆

=
(x− µ)2

2σ2
+

1
2

log 2π + log σ − log ∆

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Note as ∆⇒ 0 then l(x)⇒∞.

Coding Interpretation of Factor Analysis

Multivariate: l(y) =
1
2

∑
d

(yd − µd)2

σ2
d

+
D

2
log 2π +

∑
d

log σd −D log ∆

Alternative, two-stage code...

First code the K factors: l(x) =
1
2

∑
k

x2
k +

K

2
log 2π −K log ∆

Then code the data given the factors:

l(y|x) =
1
2

∑
d

(yd −
∑
k Λdkxk)2

Ψ2
d

+
D

2
log 2π +

∑
d

log Ψd −D log ∆

How should we choose the x ?
Deterministic vs stochastic codes and “bits back”

Principal Components Analysis

YDY1 Y2
�

X1 KX

Λ

Noise variable becomes infinitesimal compared to the scale of the data: Ψ = lim
ε→0

εI

Equivalently: reconstruction cost becomes infinite compared to the cost of coding
the hidden units under the prior.

p(x|y) = N (βy, I − βΛ)

β = lim
ε→0

ΛT (ΛΛT + εI)−1 = (ΛTΛ)−1ΛT

Eigenvalues and Eigenvectors

λ is an eigenvalue and x is an eigenvector of A if:

Ax = λx

and x is a unit vector (x>x = 1).

Interpretation: the operation of A in direction x is a scaling by λ.

The K Principal Components are the K eigenvectors with the largest eigenvalues
of the data covariance matrix (i.e. K directions with the largest variance).

Note: Σ can be decomposed:
Σ = USU>

where S is diag(σ2
1, . . . , σ

2
D) and U is a an orthonormal matrix.

Example of PCA: Eigenfaces

from www-white.media.mit.edu/vismod/demos/facerec/basic.html

Coding Interpretation of PCA

First code the K factors:

l(x) =
1
2

∑
k

x2
k +

K

2
log 2π −K log ∆

Then code the data given the factors:

l(y|x) =
1
2

∑
d

(yd −
∑
k Λdkxk)2

σ2
+
D

2
log 2π +D log σ −D log ∆

Since σ → 0 the cost of coding the factors is negligible
compared to the cost of coding the data.

Mutual Information and PCA

Problem: Given y, find x = Ay with columns of A unit vectors, s.t. I(x; y) is
maximised (assuming that P (x,y) is jointly Gaussian).

I(x; y) = H(x) +H(y)−H(x,y) = H(x)

So we want to maximize the entropy of x. What is the entropy of a Gaussian?

H(z) = −
∫
dz p(z) ln p(z) =

1
2

ln |Σ|+ D

2
(1 + ln 2π)

Therefore we want the distribution of x to have largest volume (i.e. det of covariance
matrix).

Σx = AΣyA> = AUSyU
>A>

So, A should be aligned with the columns of U which are associated with the largest
eigenvalues (variances).

FA vs PCA

• PCA is rotationally invariant; FA is not

• FA is measurement scale invariant; PCA is not

• FA defines a probabilistic model; PCA does not

Probabilistic PCA

YDY1 Y2
�

X1 KX

Λ

Linear generative model: yd =
K∑
k=1

Λdk xk + εd

• xk are independent N (0, 1) Gaussian factors
• εd are independent N (0, σ2) Gaussian noise
• K<D
PPCA is factor analysis with isotropic noise: Ψ = σ2I
Finds the same principal subspace as PCA but provides a well-defined probabilistic
model.

Network Interpretations
and Encoder-Decoder Duality

YDY1 Y2

X1 KX

YDY1 Y2
^^ ^

hidden
units

output
units

input
units

encoder
"recognition"

decoder
"generation"

From Supervised Learning to PCA

YDY1 Y2

X1 KX

YDY1 Y2
^^ ^

hidden
units

output
units

input
units

encoder
"recognition"

decoder
"generation"

A linear autoencoder neural network trained to minimise squared error learns to
perform PCA (Baldi & Hornik, 1989).

Gradient Methods of Learning FA

Write down negative log likelihood:

1
2

log |2π(ΛΛ> + Ψ)|+ 1
2
y>(ΛΛ> + Ψ)−1y

Optimize w.r.t. Λ and Ψ (need matrix calculus) subject to constraints

We will soon see an easier way to learn latent variable models...

Limitations of Gaussian, FA and PCA models

• Gaussian, FA and PCA models are easy to understand and use in practise.

• They are a convenient way to find interesting directions in very high dimensional
data sets, eg as preprocessing

• Their problem is that they make very strong assumptions about the distribution
of the data, only the mean and variance of the data are taken into account.

The class of densities which can be modelled is too restrictive.
By using mixtures of simple distributions, such as Gaussians, we can expand the
class of densities greatly.

Mixtures of Gaussians – MoG

Use probabilistic mixtures of simple (eg Gaussian) density models.

Some examples where non-Gaussian densities are modelled (aproximated) as a
mixture of Gaussians. The red curves show the (weighted) Gaussians, and the blue
curve the resulting density.

−0.5 0 0.5 1 1.5
0

0.5

1

Uniform

−0.5 0 0.5 1 1.5
0

1

2

Triangle

−2 0 2
0

0.5

1

Heavy tails

The advantage of this mixture approach, is that given enough mixture components
we can model (almost) any density (as accurately as desired), but we still only need
to work with the well known Gaussian form.

The MoG likelihood

Here a set of k Gaussians, each with a seperate mean, µi, and covariance Σi are
weighted together with (non-negative) weights πi, with the normalising condition:

πi ≥ 0, and
k∑
i=1

πi = 1.

The probability of an observation y(c) under mixture component i is Gaussian:

p(y(c)|µi,Σi) = |2πΣi|−1/2 exp
(
− 1

2
(y(c) − µi)>Σ−1

i (y(c) − µi)
)
.

The probability of an observation y(c) under the entire mixture model is a weighted
sum of Gaussian densities:

p(y(c)|µ,Σ, π) =
k∑
i=1

πip(y(c)|µi,Σi)

=
k∑
i=1

πi|2πΣi|−1/2 exp
(
− 1

2
(y(c) − µi)>Σ−1

i (y(c) − µi)
)
,

MoG as a Latent Variable Model for Clustering

y

s

P (S(c) = i|π) = πi

p(y(c)|S(c) = i, µ,Σ) = N (µi,Σi)

The MoG likelihood, continued

The probability of a set of n observations, y = {y(1), . . . , y(n)} (the likelihood):

p(y|µ,Σ, π) =
n∏
c=1

k∑
i=1

πip(y(c)|µi,Σi)

=
n∏
c=1

k∑
i=1

πi|2πΣi|−1/2 exp
(
− 1

2
(y(c) − µi)>Σ−1

i (y(c) − µi)
)
.

Here, the observations are thought of as being generated independently from the
mixture (given the parameters). The log of the likelihood is:

log p(y|µ,Σ, π) = log
n∏
c=1

k∑
i=1

πip(y(c)|µi,Σi) =
n∑
c=1

log
k∑
i=1

πip(y(c)|µi,Σi)

=
n∑
c=1

log
k∑
i=1

πi(2πΣi)−1/2 exp
(
− 1

2
(y(c) − µi)>Σ−1

i (y(c) − µi)
)
.

Maximum likelihood (ML) training a MoG model

The log likelihood is: L =
∑n
c=1 log

∑k
i=1 πip(y

(c)|µi,Σi)

Its partial derivative wrt θi = {µi,Σi} is

∂ log p(y|π, µ,Σ)
∂θi

=
n∑
c=1

πi∑k
j=1 πjp(y(c)|µj,Σj)

∂p(y(c)|µi,Σi)
∂θi

Using the identity ∂p/∂θ = p× ∂ log p/∂θ, it can be re-written as:

∂ log p(y|π, µ,Σ)
∂θi

=
n∑
c=1

r
(c)
i

∂ log p(y(c)|µi,Σi)
∂θi

,

where we have defined the responsibilities of component i for data point c as:

r
(c)
i =

πip(y(c)|µi,Σi)∑k
j=1 πjp(y(c)|µj,Σj)

= P (S(c) = i|y(c), µ,Σ) (1)

Derivatives of log likelihood

For the means we get:

∂ log p(y|π, µ,Σ)
∂µi

=
n∑
c=1

r
(c)
i Σ−1

i (y(c) − µi) (2)

and for the precisions (inverse variances, Σ−1
i):

∂ log p(y|π, µ,Σ)
Σ−1
i

=
1
2

n∑
c=1

r
(c)
i

(
Σi − (y(c) − µi)(y(c) − µi)>

)
.

Finally, the partial derivative wrt the mixing proportions is:

∂ log p(y|π, µ,Σ)
∂πi

=
n∑
c=1

p(y(c)|µi,Σi)∑k
j=1 πjp(y(c)|µj,Σj)

These equations together can be used for gradient based learning; eg taking small
steps in the direction of the gradient (or using conjugate gradients).

The k-means algorithm

Assume for simplicity, that πi = 1/k; assume further, that Σi = Iz, where z → 0.
Then the responsibilities become discrete:

r
(c)
i = δ

(
i, argmaxj p(y

(c)|µj,Σj)
)
,

being 1 for the most likely component and 0 otherwise. We can then solve directly
for the means µi by setting eq. (2) to zero, resulting in µi being equal to the mean
of the data points associated with it.

The above iterative algorithm is called k-means; it usually converges in a few
iterations and it has the advantage over the gradient based method that there is no
learning rate.

However, the assumptions we made are quite serious.

The EM algorithm: a heuristic “derivation”

One could to find a procedure which jumps in parameter space, without quite as
severe restrictions as k-means.

One idea is to neglect the dependency of the responsibilities on the parameters when
calculating derivatives. If we do that, we can explicitly solve for the parameters,
given the responsibilities.

We get the following two step algorithm:

• Evaluate the resonsibilities (given the parameters), using eq. (1).

• Optimize the parameters (given the responsibilities)

µi =
n∑
c=1

r
(c)
i y(c)/

n∑
c=1

r
(c)
i , and Σi =

n∑
c=1

r
(c)
i (y(c) − µi)(y(c) − µi)>/

n∑
c=1

r
(c)
i .

In fact, we will show in the next lectures that this procedure is guaranteed not to
decrease the likelihood in each iteration. The algorithm is called the EM algorithm.

Problems

There are several problems with the new algorithms:

• slow convergence for the gradient based method

• gradient based method may develop invalid covariance matrices

• local minima; the end configuration may depend on the starting state

• how do you adjust k? Using the likelihood alone is no good.

• singularities; components with a single data point will have their covariance going
to zero and the likelihood will tend to infinity.

Appendix: Coding under a mixture: Naive

Consider the following communication game: a sender wishes to communicate a large i.i.d. data set

(x1, x2, . . . , xn) losslessly (to within some discretization ∆) to a receiver. The sender and receiver

agree to use a mixture of Gaussians (MoG) model. The sender also wishes to communicate some

additional data which has already been compressed so that it looks like a bucket of m random bits.

Let’s consider three qualitatively different ways in which the sender can encode the data:

• Naive. Discretize the range of data (min(x),max(x)) into equal bins of size ∆. Send

min(x) and max(x) and then for each data point the identity of the bin it fell into. The total

code length will be n log2((max(x) −min(x))/∆) + m. This is optimal only if the data is

uniformly distributed.

Coding under a mixture: Deterministic

• Deterministic Three-Part Code

1. Send θ, the parameters of the MoG. This has to be done only once (which code should be

used here? maybe sender and receiver need to have agreed on a coding scheme, i.e. a p(θ)...).

For each data point xi
2. Send the discrete identity si of the best (i.e. most probable) Gaussian given the data point:

si = argmaxk P (Si = k|xi, θ)

If all the Gaussians have equal prior and equal covariance this is the identity of the Gaussian

whose mean is closest to xi. (You can think of the si as the discrete latent variable

associated with xi).

3. Send the code for xi given the identity of the “best” Gaussian. This corresponds to the

“reconstruction coding cost” to within ∆:

− log p(xi|µsi,Σsi
)− log ∆

Since your code is deterministic, you also need to spend m bits to send the additional data.

The total coding cost for this deterministic scheme is:

− log p(θ)−
∑
i

argmink [log p(xi|Si = k) + logP (Si = k)]− n log ∆ +m (3)

Coding under a mixture: Stochastic

• Stochastic Three-part Code

1. Send θ, as above.

For each data point, xi
2. Send a discrete identity si “sampled” from some arbitrary distribution: si ∼ Qi(S)

3. Send the code for xi given the identity of the sampled Gaussian:

− log p(xi|µsi,Σsi
)− log ∆

Every time you supposedly “sampled”, you actually looked at the bucket of random bits, and

selected si deterministically using the “random” bits and the distribution Qi. You will need to

use up − logQi(si) bits from the bucket to code si. (In practice this can be done using block

arithmetic codes). Fortunately, the receiver can reverse-engineer exactly what you’ve done, and

figure out what these random bits were, so you only need to send the remaining bits. The bits

you saved are called the bits-back (Hinton and Zemel, 1994).

The total expected coding cost for this stochastic scheme is:

− log p(θ)−
∑
i

∑
k

Qi(Si = k) [log p(xi|Si = k) + logP (Si = k)]− n log ∆

+

[
m− (−

∑
i

∑
k

Qi(Si = k) logQi(Si = k))

] (4)

Coding under a mixture (cont)

What is the optimal stochastic code?
Minimizing (4) with respect to each Qi we find that the stochastic code with the minimum expected

coding cost is:

Q
∗
i (S) = P (S|xi, θ)

This can be proven by re-writing (4) using KL-divergences.

So the optimal thing to do is to pick latent codes randomly from the posterior distribution of the

latent variables for each data point. If your mixture model is the correct distribution for the data,

this stochastic code will achieve the Shannon lower limit, while the deterministic code will not.

Note 1 One can use exactly the same argument for a stochastic three-part code for factor analysis, the

main difference being that the latent variables are continuous (and thus need also a discretization ∆).

Note 2 The same argument can be generalized to the question of how one should code the

parameter θ. If sender and receiver agree on a prior, then using a similar bits-back argument, the

lowest expected coding cost is achieved sending a θ sampled from the posterior, not by sending the

most probable θ. This point is usually confused in the MDL/MML literature. See Wallace and Dowe

(1999) for a nice explanation.

Suggested Readings

• David MacKay’s Textbook http://wol.ra.phy.cam.ac.uk/itprnn/book.ps.gz, chapter 21, pages

295-306, draft 2.2.4, August 31, 2001

• Hinton and Zemel (1994) Autoencoders, minimum description length, and the Helmholtz free

energy. In Adv in Neur Info Proc Syst 6. Morgan Kaufmann. See www.cs.toronto.edu/∼hinton/

• Minka, T. Tutorial on linear algebra.

http://www-white.media.mit.edu/∼tpminka/papers/matrix.html

• Roweis and Ghahramani (1999) A Unifying Review of Linear Gaussian Models. Neural

Computation 11(2). Sections 1-5.3 and 6-6.1. See also Appendix A.1-A.2.

http://www.gatsby.ucl.ac.uk/∼zoubin/papers/lds.ps.gz

• Wallace, C. S. and Dowe, D. L. (1999) Minimum message length and Kolmogorov complexity.

The Computer Journal 42(4):270–283.

• Welling, M. (2000) Linear models. class notes.

http://www.gatsby.ucl.ac.uk/∼zoubin/course01/PCA.ps

