Lecture Outline

1. EM Algorithm for MLE (maximum likelihood estimation)

- Some theory
- An illustration involving missing data
- **2.** [This part appears as a separate file]

Remarks on Improper "Ignorance" Priors

- As a limit of proper priors
- Two caveats (relating to lack of σ -additivity)
 - \circ Inadmissibility
 - \circ How to compute over non-linear transformations

EM for *MLE* – making a one-step likelihood maximization easier through a (convergent) sequence of simpler maximizations.

Let $X_1, X_2, ..., X_n$ be *iid* with common density function $p(X | \theta)$.

We are looking to maximize the likelihood function:

$$\hat{\theta} = \operatorname{argmax}_{\Theta} \mathbf{L}(\theta \mid \mathbf{x}) = \prod_{i=1}^{n} p(\mathbf{x} \mid \theta).$$

This may be hard to do as the likelihood function $L(\theta | x)$ may be complicated. Instead, it may be easier to work with a likelihood function augmented by data Z $L(\theta | x, z)$

to be integrated out at a later stage of computation.

This is feasible when we can write

$$p(x \mid \theta) = \int_{Z} f(x, z \mid \theta) dz$$

for some convenient joint density function $f(x, z \mid \theta)$.

Now by the multiplication theorem for densities:

$$f(x, z \mid \theta) = h(z \mid x, \theta) p(x \mid \theta)$$

where $h(z | x, \theta)$ is a conditional density function for Z given X and θ .

It is the convenience of working with the joint density $f(x, z | \theta)$ and the conditional density $h(z | x, \theta)$ that drives *EM* calculations, as

$$p(x \mid \theta) = f(x, z \mid \theta) / h(z \mid x, \theta)$$

Thus, quite generally:

(*)
$$\log \mathbf{L}(\theta \mid \mathbf{x}) = \log \mathbf{L}(\theta \mid \mathbf{x}, \mathbf{z}) - \log \mathbf{h}(\mathbf{z} \mid \mathbf{x}, \theta).$$

Following (Dempster, Laird and Rubin, 1977), with θ_0 arbitrary, define the two functions:

(**) E-step
$$Q(\theta \mid x, \theta_0) = \int_Z [\log L(\theta \mid x, z)] h(z \mid x, \theta_0) dz$$
and
(***)
$$H(\theta \mid x, \theta_0) = \int_Z [\log h(z \mid x, \theta_0)] h(z \mid x, \theta_0) dz.$$

Then $\log \mathbf{L}(\theta \mid \mathbf{x}) = \mathbf{Q}(\theta \mid \mathbf{x}, \theta_0) - \mathbf{H}(\theta \mid \mathbf{x}, \theta_0).$

Begin the iterative process by letting

M-step $\hat{\theta}_1 = \operatorname{argmax}_{\Theta} \boldsymbol{Q}(\theta \mid \boldsymbol{x}, \theta_0)$

and then replacing θ_0 with $\hat{\theta}_1$ in (**), which leads to a revised (***) in the light of (*).

Thus,
$$\hat{\theta}_{j+1} = \operatorname{argmax}_{\Theta} Q(\theta \mid x, \hat{\theta}_j).$$

(DLR) <u>EM</u>-jargon: $\log L(\theta | x)$ is the *incomplete* log-likelihood function. $\log L(\theta | x, z)$ is the complete log-likelihood function. and $Q(\theta | x, \theta_0)$ is the *expected* log-likelihood function. Theorem: For the sequence $\hat{\theta}_{j+1} = \operatorname{argmax}_{\Theta} Q(\theta \mid x, \hat{\theta}_j), \quad j = 1, \dots$ $\mathbf{L}(\hat{\theta}_{j+1} \mid x) \geq \mathbf{L}(\hat{\theta}_j \mid x)$ with equality if and only if $Q(\hat{\theta}_{j+1} \mid x, \hat{\theta}_j) = Q(\hat{\theta}_j \mid x, \hat{\theta}_j).$

Proof: Recall that $\log \mathbf{L}(\theta \mid \mathbf{x}) = \mathbf{Q}(\theta \mid \mathbf{x}, \theta_0) - \mathbf{H}(\theta \mid \mathbf{x}, \theta_0)$. Then on successive iterations $\log \mathbf{L}(\hat{\theta}_{j+1} \mid \mathbf{x}) - \log \mathbf{L}(\hat{\theta}_j \mid \mathbf{x}) = [\mathbf{Q}(\hat{\theta}_{j+1} \mid \mathbf{x}, \hat{\theta}_j) - \mathbf{Q}(\hat{\theta}_j \mid \mathbf{x}, \hat{\theta}_j)] - [\mathbf{H}(\hat{\theta}_{j+1} \mid \mathbf{x}, \hat{\theta}_j) - \mathbf{H}(\hat{\theta}_j \mid \mathbf{x}, \hat{\theta}_j)].$

Evidently $[Q(\hat{\theta}_{j+1} | \mathbf{x}, \hat{\theta}_j) - Q(\hat{\theta}_j | \mathbf{x}, \hat{\theta}_j)] \ge 0$, by the iteration

Thus, we must show that:

$$\int_{\mathbb{Z}} \left[\log h(z \mid x, \hat{\theta}_{j+1}) - \log h(z \mid x, \hat{\theta}_{j}) \right] h(z \mid x, \hat{\theta}_{j}) dz. \le 0.$$

Or,
$$\int_{\mathbb{Z}} \log \left[h(z \mid x, \hat{\theta}_{j+1}) / h(z \mid x, \hat{\theta}_{j}) \right] h(z \mid x, \hat{\theta}_{j}) dz. \le 0.$$

Recall, *K-L* information is non-negative and 0 only for identical distributions.

$$\mathbb{E}_{\boldsymbol{h}(\boldsymbol{z} \mid \boldsymbol{x}, \, \hat{\boldsymbol{\theta}}_{j})} \log \left[\boldsymbol{h}(\boldsymbol{z} \mid \boldsymbol{x}, \, \hat{\boldsymbol{\theta}}_{j}) \,/\, \boldsymbol{h}(\boldsymbol{z} \mid \boldsymbol{x}, \, \hat{\boldsymbol{\theta}}_{j+1})\right] \geq 0.$$

Aside: This follows by Jensen's Inequality, twice, noting that for positive rv's 1/E[X] < E[1/X] and that $E[\log X] < \log E[X]$.

So,
$$0 \ge -E_{h(z \mid x, \hat{\theta}_{j})} \log [h(z \mid x, \hat{\theta}_{j}) / h(z \mid x, \hat{\theta}_{j+1})]$$

$$= E_{h(z \mid x, \hat{\theta}_{j})} -\log [h(z \mid x, \hat{\theta}_{j}) / h(z \mid x, \hat{\theta}_{j+1})]$$

$$= E_{h(z \mid x, \hat{\theta}_{j})} \log [h(z \mid x, \hat{\theta}_{j+1}) / h(z \mid x, \hat{\theta}_{j})]$$

$$= \int_{Z} \log [h(z \mid x, \hat{\theta}_{j+1}) / h(z \mid x, \hat{\theta}_{j})] h(z \mid x, \hat{\theta}_{j}) dz$$

To insure that the sequence $\langle \hat{\theta}_i \rangle$ converges the following result helps:

Theorem: (Boyles, 1983; Wu, 1983)

If the expected log-likelihood function $Q(\theta | x, \theta_0)$ is continuous in both θ and θ_0 , then all limit points of an *EM* sequence $\langle \hat{\theta}_j \rangle$ are *stationary points* of $\mathbf{L}(\theta | x)$ and $\mathbf{L}(\hat{\theta}_j | x)$ converges monotonically to $\mathbf{L}(\hat{\theta} | x)$ for some *stationary point* $\hat{\theta}$. That is, then $\frac{\partial \log p(\theta | x)}{\partial \theta}\Big|_{\theta=\hat{\theta}} = 0.$

EM with missing-data.

One-way layout with missing data:

Let X_{ij} denote the response variable of the *j*th subject among those receiving treatment dose-*i*.

Statistical model: Assume $X_{ij} \sim N(\mu_i, \sigma^2)$; $i = 1, ..., k; j = 1, ..., n_i$.

The μ_i are the parameters of interest: average effects of a given treatment dose. Let $\overline{\mu}$ be an average of average dose effects so that: $\mu_i = \overline{\mu} + \alpha_i$, where $\sum_i \alpha_i = 0$. That is $\overline{\mu} = \sum_i \mu_i / k$ and $\alpha_i = \mu_i - \overline{\mu}$.

Note well the relation to the *k*-MoG problem!

The least squares estimator of μ_i is (evidently) $\overline{x}_i = (1/n_i) \sum_{j=1}^{n_i} x_{ij}$.

And the minimum variance (unbiased) estimators for the other parameters are: $\hat{\mu} = (1/k) \sum_{i} \overline{x}_{i}$ and $\hat{\alpha}_{i} = \overline{x}_{i} - \hat{\mu}$

However, when the sample sizes (n_i) are not all equal, the vectors of the coefficients of the X_{ij} in the $\hat{\alpha}_i$ are not orthogonal to the respective vector of coefficients of $\hat{\mu}$. Thus, $\hat{\mu}$ is not independent of the $\hat{\alpha}_i$.

Suppose we have 4 treatment groups, with outcomes

TREATMENTS

T1	T2	T3	T4
<i>x</i> ₁₁	x_{21}	<i>x</i> ₃₁	<i>x</i> ₄₁
<i>x</i> ₁₂	<i>x</i> ₂₂	<i>x</i> ₃₂	<i>x</i> ₄₂
z_1	<i>x</i> ₂₃	<i>z</i> 3	<i>x</i> ₄₃

Observe X_{ij} and use the Zs as the *dummy* missing values to create a balanced sample.

Thus, $X_{ij} \sim N(\overline{\mu} + \alpha_i, \sigma^2)$ and our dimensional parameter $\theta = (\overline{\mu}, \sigma^2, \alpha_1, \alpha_2, \alpha_3, \alpha_4)$.

The *incomplete* likelihood is:

$$\mathbf{L}(\theta \mid \mathbf{x}) = \mathbf{p}(\mathbf{x} \mid \theta) = \sqrt{(1/2\pi\sigma^2)^{10} \exp[\sum_{i=1}^{4} \sum_{j=1}^{n_i} (x_{ij} - \overline{\mu} - \alpha_i)^2 / \sigma^2]}$$

The *complete* likelihood is:

$$\mathbf{L}(\theta \mid \mathbf{x}, \mathbf{z}) = f(\mathbf{x}, \mathbf{z} \mid \theta) = \sqrt{(1/2\pi\sigma^2)^{12}} \exp[\sum_{i=1}^{4} \sum_{j=1}^{3} (x_{ij} - \mu - \alpha_i)^2 / \sigma^2]$$

where, of course, $x_{13} = z_1$ and $x_{33} = z_3$.

Now, run the *EM* algorithm with the augmented data (*x*,*z*) and simplified likelihood (based on a balanced sample) in order to find the MLE for $L(\theta, x)$.