Lecture Outline

1. EM Algorithm for MLE (maximum likelihood estimation)

e Some theory

« An illustration involving missing data

2. [This part appears as a separate file]
Remarks on Improper “lIgnorance’ Priors
» As a limit of proper priors

* Two caveats (relating to lack of o-additivity)
o Inadmissibility
o0 How to compute over non-linear transformations



EM for MLE — making a one-step likelihood maximization easier
through a (convergent) sequence of simpler maximizations.

Let Xy, X,, ... X, be 1id with common density function p(X | ).

We are looking to maximize the likelihood function:

0 = argmaxgL(®|X)= [, p(x|0).

This may be hard to do as the likelihood function L(0 | X) may be complicated.

Instead, it may be easier to work with a likelihood function augmented by data Z
L(O| X, 2)

to be integrated out at a later stage of computation.



This 1s feasible when we can write

p(x|08) = jz f(x,z|0)dz

for some convenient joint density function f(X, z | 9).

Now by the multiplication theorem for densities:
f(x,2|8) = h(z[x,6)p(x|6)

where h(z | X, 0) is a conditional density function for Z given X and 0.

It is the convenience of working with the joint density f(X, z | 0) and the
conditional density h(z | X, 0) that drives EM calculations, as

p(x|0)=1(x,z|0) /h(z|x, 0)



Thus, quite generally:
(*) log L(B|x)=1log L(O|X,z)—logh(z|X,0).

Following (Dempster, Laird and Rubin,1977), with 8 arbitrary, define the two functions:

(**) E-step QO X, 0y = jz [log L(8 | X, 2)] h(z| X, Bp) dz
and

(***) H(®|x, 0y = fz [log h(z | X, Bg)] h(z | X, 8p) dz.

Then log L(B|X) = Q(O|X,6p)— H(O|X, ).



Begin the iterative process by letting
M-step 8, =argmaxg Q(8]Xx, 8p)

and then replacing 6y with él in (**), which leads to a revised (***) in the light of (*).
Thus, éj+1: argmaxg Q(O | X, éj).

(DLR) EM -jargon: log L(0 | X) is the incomplete log-likelihood function.

log L(B | X, 2) is the complete log-likelihood function.
and Q(0 | X, 8) is the expected log-likelihood function.



Theorem:  For the sequence éjﬂ = argmaxg Q(0 | X, éj), =1, ...
L(B;4; [X) 2 L(6 %)

with equality if and only if ~ Q(Bj4; | X, 6;) = Q(6; X, 6;).

Proof: Recallthat logL(6|Xx) = Q(O]X, 8g) — H(B|X, 9y).
Then on successive iterations

log L(B;4; | Xx)—log L(B; |x) =
[Q(B41 | X, 8)) — Q(8; | X, 6] — [H(B;+1 | X, 6;) — H(B; | X, 6))].

Evidently [Q(@jﬂ X, 8;) — Q(@j X, 8:)] = 0, by the iteration



Thus, we must show that:

L logh@|x, 6., —loghz|x, 6)]1h|x, 6;)dz. <0
Z J+1

Or, L, log [h(z | x, 8- D/h(z| %, 8)1h(z|x, 8;)dz. <0

Recall, K-L information is non-negative and 0 only for identical distributions.
Eh(z X, éj) log [h(z | X, 6 P/ h(z]X, GJH)

Aside: This follows by Jensen’s Inequality, twice, noting that for positive rv’s
1/E[X] < E[1/X] and that E[log X] < log E[X] .

v

So, 02 ~En(z|x, ;) log [h(z|x, 8,/ h(z| X, 8;4))]
= Eng|x, o, 109 [hiz|x 8/ h(z|x, 8]

= [ log [h(z| X, 6:.,)/h(z|x, B:)] h(z|x, 8:) dz
Z Jtl




To insure that the sequence <éj> converges the following result helps:

Theorem: (Boyles, 1983; Wu, 1983)

If the expected log-likelihood function Q(0 | X, 8p) is continuous in both 6 and 6,
then all limit points of an EM sequence <éj> are stationary points of L(0 | X) and

L(éj | X) converges monotonically to L(8 | x) for some stationary point 6.

dlog p(O] x)

. = 0.
00 6=0

That 1s, then




EM with missing-data.

One-way layout with missing data:

Let Xj; denote the response variable of the jth subject among those receiving

treatment dose-lI.

Statistical model: Assume Xj; [J N(u,o%);i=1,...,kj=1,...,n.
The W, are the parameters of interest: average effects of a given treatment dose.
Let I be an average of average dose effects so that: ;= L + a;, where 2.; a; = 0.

That 1s H=2ik/k and o;=p;—H.

Note well the relation to the k-MoG problem!



The least squares estimator of |; is (evidently) X;=(1/n;) er‘i:l Xij-

And the minimum variance (unbiased) estimators for the other parameters are:

p=1/KX:x and G; =X —[1

However, when the sample sizes (n;) are not all equal, the vectors of the
coefficients of the X;; in the & are not orthogonal to the respective vector of

coefficients of (1. Thus, {1 1s not independent of the G;.
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Suppose we have 4 treatment groups, with outcomes

TREATMENTS

X11 X21 X31 X41
X12 X22 X32 X42
Z1 X3 Z3 X43

Observe X;j and use the Zs as the dummy missing values to create a balanced sample.

Thus, X;; 0 N(+o ,02) and our dimensional parameter 6 = ([, G2, O, 05, O3, Oy).
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The incomplete likelihood is:

L(® %) =p(x|8) =V (1121e)10 exp[ T, T, (% — 1~ a7)* /07

The complete likelihood is:
L(B | x,2) =f(x,z|8) =V (112112 exp[ X, X3, O ~H - 0;)* /0%

where, of course, X;3=Z; and X33= Z3.

Now, run the EM algorithm with the augmented data (X,z) and simplified likelihood
(based on a balanced sample) in order to find the MLE for L(0, X).
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