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Review: The EM algorithm

Given a set of observed (visible) variables V', a set of unobserved (hidden / latent /
missing) variables H, and model parameters 6, optimize the log likelihood:

£(6) = logp(V16) = log | p(H.VI6)dH.

Using Jensen's inequality, for any distribution of hidden variables q(H) we have:

p(H,V|0)
q(H)

p(H,V|0)
q(H)

£(6) = log / o(H) dH > / 1(H) log dH = F(q,0).

defining the F(q, #) functional, which is a lower bound on the log likelihood.

In the EM algorithm, we alternately optimize F(q,6) wrt ¢ and 8, and we can prove
that this will never decrease L.



The E and M steps of EM

The lower bound on the log likelihood:

H,V10)
q(H)

F(q,0) / a(H) log 2L VIO gy / a(H) log p(H, V|6)dH + H(q),

where H(q) = —/q(H) log q(H)dH is the entropy of q. We iteratively alternate:

E step: maximize F(q,0) wrt the distribution over hidden variables given the
parameters:

¢"®)(H) := argmax F(q(H), 9(’“_1)).
q(H)

M step: maximize F(q, ) wrt the parameters given the hidden distribution:

9F) .= argmax ]:(q(k)(H),Q) — argmax /q(k)(H) logp(H,V|0)dH,
0 0

which is equivalent to optimizing the expected complete-data likelihood
p(H,V|0), since the entropy of ¢(H) does not depend on 6.



EM as Coordinate Ascent in F
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Variational Approximations to the EM algorithm

Often p(H|V,0) is computationally intractable, so an exact E step is out of the
question.

Assume some simpler form for ¢(H), e.g. ¢ € Q, the set of fully-factorized
distributions over the hidden variables: ¢(H) =[], ¢(H;)

E step (approximate): maximize F(q,6) wrt the distribution over hidden variables
given the parameters:

q(k)(H) ;= argmax ]:(q(H),Q(k_l)).
q(H)eQ

M step : maximize F(q,0) wrt the parameters given the hidden distribution:

p*) .= argmax ]-“(q(k)(H),H) = argmax /q““)(H) logp(H,V|0)dH,
0 0

This maximizes a lower bound on the log likelihood.
Using the fully factorized form of ¢ is sometimes called a mean-field approximation.



Example: A Multiple Cause Model

Model with binary latent variables s;, real-valued observed vector y and parameters
K 2
0 = {{p;; mitisy, 07}

K K

p(y|si,...,sklp, o) = N(Z Sifb;, 0°1)

EM optimizes lower bound on likelihood:

F(q,0) = (logp(s,y(0)) q(s) — {log q(s)) q(s)

where (), is expectation under g¢.

Optimum E step: ¢(s) = p(s|y, 0) is exponential in K.



Example: A Multiple Cause Model (cont)

F(q,0) = (logp(s,y]0)) q(s) — {log q(s)) ¢(s)

log  p(s,y|0) +c
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we therefore need (s;) and (s;s;) to compute F.

These are the expected sufficient statistics of the hidden variables.



Example: A Multiple Cause Model (cont)

Variational approximation:

K
q(s) = [ Jas(ss) = [ A1 = x)t =)
¢ i=1
Under this approximation we know (s;) = A; and (s;5;) = A\ + 855 (A; — A?).
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where C(A, p) = =525 > ,(\i = A '



Fixed point equations for multiple cause model

Taking derivatives w.r.t. \;:
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Setting to zero we get fixed point equations:
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where f(x) = 1/(1 + exp(—=x)) is the logistic (sigmoid) function.

Learning algorithm:

E step: run fixed point equations until convergence of X\ for each data point.
M step: re-estimate 0 given As.



KL divergence

Note that

E step maximize F(q,0) wrt the distribution over hidden variables, given the

parameters:
¢"*)(H) := argmax F(q(H), H(k_l)).
q(H)eQ

is equivalent to:

E step minimize KL (q||p(H|V,#)) wrt the distribution over hidden variables, given
the parameters:

q(H)
H|V, 00~ 1)

q(k)(H) — argmin/q(H) log ( dH
p

q(H)eQ

So, at each E step, the variational approximation is trying to find the best
approximation to p in Q.
This is related to ideas in information geometry.



Structured Variational Approximations

q(H) need not be completely factorized.

For example, suppose you can partition H into sets H; and H5 such that computing
the expected sufficient statistics under q(H;) and q(H>) is tractable.
Then q(H) = q(H1)q(H>) is tractable.

If you have a graphical model, you may want to factorize ¢(H) into a product of
trees, which are tractable distributions.

More about this later (after we study graphical models).



Variational Approximations to Bayesian Learning

logp(V) = log / / p(V. H|0)p(0) dI d6

p(V,H,0)
//q(H,H)log J(1.0) dH do

Vv

Constrain g € Q s.t. q(H,0) = q(H)q(0).
This results in the variational Bayesian EM algorithm.

More about this later (when we study model selection).



How tight is the lower bound?

It is hard to compute a nontrivial general upper bound.

To determine how tight the bound is, one can approximate the true likelihood by a
variety of other methods.

One approach is to use the variational approximation as as a proposal distribution
for importance sampling (but we know how hard importance sampling can be in
high dimensions).
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