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Review: The EM algorithm

Given a set of observed (visible) variables V , a set of unobserved (hidden / latent /
missing) variables H, and model parameters θ, optimize the log likelihood:

L(θ) = log p(V |θ) = log
∫
p(H,V |θ)dH,

Using Jensen’s inequality, for any distribution of hidden variables q(H) we have:

L(θ) = log
∫
q(H)

p(H,V |θ)
q(H)

dH ≥
∫
q(H) log

p(H,V |θ)
q(H)

dH = F(q, θ),

defining the F(q, θ) functional, which is a lower bound on the log likelihood.

In the EM algorithm, we alternately optimize F(q, θ) wrt q and θ, and we can prove
that this will never decrease L.



The E and M steps of EM

The lower bound on the log likelihood:

F(q, θ) =
∫
q(H) log

p(H,V |θ)
q(H)

dH =
∫
q(H) log p(H,V |θ)dH +H(q),

where H(q) = −
∫
q(H) log q(H)dH is the entropy of q. We iteratively alternate:

E step: maximize F(q, θ) wrt the distribution over hidden variables given the
parameters:

q(k)(H) := argmax
q(H)

F
(
q(H), θ(k−1)

)
.

M step: maximize F(q, θ) wrt the parameters given the hidden distribution:

θ(k) := argmax
θ

F
(
q(k)(H), θ

)
= argmax

θ

∫
q(k)(H) log p(H,V |θ)dH,

which is equivalent to optimizing the expected complete-data likelihood
p(H,V |θ), since the entropy of q(H) does not depend on θ.



EM as Coordinate Ascent in F



Variational Approximations to the EM algorithm

Often p(H|V, θ) is computationally intractable, so an exact E step is out of the
question.

Assume some simpler form for q(H), e.g. q ∈ Q, the set of fully-factorized
distributions over the hidden variables: q(H) =

∏
i q(Hi)

E step (approximate): maximize F(q, θ) wrt the distribution over hidden variables
given the parameters:

q(k)(H) := argmax
q(H)∈Q

F
(
q(H), θ(k−1)

)
.

M step : maximize F(q, θ) wrt the parameters given the hidden distribution:

θ(k) := argmax
θ

F
(
q(k)(H), θ

)
= argmax

θ

∫
q(k)(H) log p(H,V |θ)dH,

This maximizes a lower bound on the log likelihood.
Using the fully factorized form of q is sometimes called a mean-field approximation.



Example: A Multiple Cause Model

Model with binary latent variables si, real-valued observed vector y and parameters
θ = {{µi, πi}Ki=1, σ

2}

p(s1, . . . , sK|π) =
K∏
i=1

p(si) =
K∏
i=1

πsii (1− πi)(1−si)

p(y|s1, . . . , sK|µ, σ2) = N (
∑
i

siµi, σ
2I)

EM optimizes lower bound on likelihood:

F(q,θ) = 〈log p(s,y|θ)〉q(s) − 〈log q(s)〉q(s)

where 〈〉q is expectation under q.

Optimum E step: q(s) = p(s|y,θ) is exponential in K.



Example: A Multiple Cause Model (cont)

F(q,θ) = 〈log p(s,y|θ)〉q(s) − 〈log q(s)〉q(s)

log p(s, y|θ) + c

=
∑K

i=1 si log πi +(1− si) log(1− πi)−D log σ −
1

2σ2
(y −

∑
i

siµi)
>

(y −
∑
i

siµi)

=
∑K

i=1 si log πi +(1− si) log(1− πi)−D log σ

−
1

2σ2
(y>y − 2

∑
i

siµi
>y +

∑
i

∑
j

sisjµi
>
µj)

we therefore need 〈si〉 and 〈sisj〉 to compute F .

These are the expected sufficient statistics of the hidden variables.



Example: A Multiple Cause Model (cont)

Variational approximation:

q(s) =
∏
i

qi(si) =
K∏
i=1

λsii (1− λi)(1−si)

Under this approximation we know 〈si〉 = λi and 〈sisj〉 = λiλj + δij(λi − λ2
i ).

F(λ, θ) =
∑
i

λi log
πi

λi
+ (1− λi) log

(1− πi)
(1− λi)

−D log σ −
1

2σ2
(y −

∑
i

λiµi)
>

(y −
∑
i

λiµi) + C(λ,µ)

where C(λ,µ) = − 1
2σ2

∑
i(λi − λ2

i )µi
>µi



Fixed point equations for multiple cause model

Taking derivatives w.r.t. λi:

∂F
∂λi

= log
πi

1− πi
− log

λi
1− λi

+
1
σ2

(y −
∑
j 6=i

λjµj)
>µi −

1
2σ2

µi
>µi

Setting to zero we get fixed point equations:

λi = f

log
πi

1− πi
+

1
σ2

(y −
∑
j 6=i

λjµj)
>µi −

1
2σ2

µi
>µi


where f(x) = 1/(1 + exp(−x)) is the logistic (sigmoid) function.

Learning algorithm:

E step: run fixed point equations until convergence of λ for each data point.
M step: re-estimate θ given λs.



KL divergence

Note that

E step maximize F(q, θ) wrt the distribution over hidden variables, given the
parameters:

q(k)(H) := argmax
q(H)∈Q

F
(
q(H), θ(k−1)

)
.

is equivalent to:

E step minimize KL(q‖p(H|V, θ)) wrt the distribution over hidden variables, given
the parameters:

q(k)(H) := argmin
q(H)∈Q

∫
q(H) log

q(H)
p(H|V, θ(k−1))

dH

So, at each E step, the variational approximation is trying to find the best
approximation to p in Q.
This is related to ideas in information geometry.



Structured Variational Approximations

q(H) need not be completely factorized.

For example, suppose you can partition H into sets H1 and H2 such that computing
the expected sufficient statistics under q(H1) and q(H2) is tractable.
Then q(H) = q(H1)q(H2) is tractable.

If you have a graphical model, you may want to factorize q(H) into a product of
trees, which are tractable distributions.
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More about this later (after we study graphical models).



Variational Approximations to Bayesian Learning

log p(V ) = log
∫ ∫

p(V,H|θ)p(θ) dH dθ

≥
∫ ∫

q(H,θ) log
p(V,H,θ)
q(H,θ)

dH dθ

Constrain q ∈ Q s.t. q(H,θ) = q(H)q(θ).

This results in the variational Bayesian EM algorithm.

More about this later (when we study model selection).



How tight is the lower bound?

It is hard to compute a nontrivial general upper bound.

To determine how tight the bound is, one can approximate the true likelihood by a
variety of other methods.

One approach is to use the variational approximation as as a proposal distribution
for importance sampling (but we know how hard importance sampling can be in
high dimensions).
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