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INTRODUCTION

The article GRAPHICAL MODELS: PARAMETER LEARNING discussed the learning

of parameters for a �xed graphical model. In this article, we discuss the simultaneous

learning of parameters and structure. Real-world applications of such learning abound

and can be found in (e.g.) the Proceedings of the Conference on Uncertainty in Arti�cial

Intelligence (1991 and after). An index to software for parameter and structure learning

can be found at http://www.cs.berkeley.edu/ murphyk/Bayes/bnsoft.html.

For simplicity, we concentrate on directed-acyclic graphical models (DAG models), but

the basic principles described here can be applied more generally. We describe the Bayesian

approach in detail and mention several common non-Bayesian approaches.

We use the same notation as the article on parameter learning. In particular, we use X =

(X1; : : : ; Xn) to denote the n variables that we are modeling, x to denote a con�guration

or observation of X, d = (x1; : : : ;xN) to denote a random sample of N observations of X.

In addition, we use Pai to denote the variables corresponding to the parents of Xi in a

DAG model and pai to denote a con�guration of those variables. Finally, we shall use the

terms \model" and \structure" interchangeably. In particular, a DAG model (and hence

its structure) is described by (1) its nodes and arcs, and (2) the distribution class of each

of its local distributions p(xijpai).

THE BAYESIAN APPROACH

When we learn a model and its parameters, we presumably are uncertain about their

identity. When following the Bayesian approach|in which all uncertainty is encoded as

(subjective) probability|we encode this uncertainty as prior distributions over random vari-

ables corresponding to structure and parameters. In particular, let m be a random variable

having states m1; : : : ;mM corresponding to the possible models. (Note that we are assum-

ing the models are mutually exclusive). In addition, let �1; : : : ; �M be random variables
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corresponding the unknown parameters of each of the M possible models. Then we express

our uncertainty prior to learning as the prior distributions p(m), and p(�1); : : : ; p(�M ).

Given data d, a random sample from the true but unknown joint distribution for d, we

compute the posterior distributions for each m and �
m using Bayes' rule:

p(mjd) =
p(m) p(djm)P
m0 p(m0) p(djm0)

(1)

p(�mjd;m) =
p(�mjm) p(dj�m;m)

p(djm)
(2)

where

p(djm) =
Z
p(dj�m;m) p(�mjm) d�m (3)

is called the marginal likelihood. Given some hypothesis of interest, h, we determine the

probability that h is true given data d by averaging over all possible models and their

parameters:

p(hjd) =
X
m

p(mjd) p(hjd;m) (4)

p(hjd;m) =
Z
p(hj�m;m) p(�mjd;m) d�m (5)

For example, h may be the event that the next case XN+1 is observed in con�guration

xN+1. In this situation, we obtain

p(xN+1jd) =
X
m

p(mjd)

Z
p(xN+1j�m;m) p(�mjd;m) d�m (6)

where p(xN+1j�m;m) is the likelihood for the model. It is important to note that, in

the Bayesian approach, no single model is learned. Instead, data is used to update the

probability that each possible model is the correct one.

Unfortunately, this approach|sometimes called Bayesian model averaging or the full

Bayesian approach|is often impractical. For example, the number of di�erent DAG models

for a domain containing n variables grows super exponentially with n. Thus, the approach

can only be applied in those few settings where one has strong prior knowledge that can

eliminate almost all possible models.

Statisticians, who have been confronted by this problem for decades in the context of

other types of models, use two approximations to address this problem: Bayesian model

selection and selective Bayesian model averaging. The former approach is to select a likely

model from among all possible models, and use it as if it were the correct model. For

example, to predict the next case, we use

p(xN+1jd) �= p(xN+1jm;d) =
Z
p(xN+1j�m;m) p(�mjd;m) d�m (7)
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where m is the selected model. The latter approach is to select a manageable number of

good models from among all possible models and pretend that these models are exhaustive.

In either approach, we need only the relative model posterior|p(m) p(djm)|to select

likely models.

Both approaches can be characterized as search-and-score techniques. That is, in these

approaches, we search among a large set of models looking for those with good scores.

The use of these approximate methods raise several important questions. Do they yield

accurate results when applied to graphical-model learning? If so, can we compute the

model posteriors and perform search e�ciently?

The question of accuracy is di�cult to answer in theory. Nonetheless, several researchers

have shown experimentally that the selection of a single good hypothesis often yields ac-

curate predictions (e.g., Cooper and Herskovits 1992; Heckerman, Geiger, and Chickering,

1995) and that selective model averaging using Monte-Carlo methods can sometimes be ef-

�cient and yield even better predictions (Madigan et al., 1996). These results are somewhat

surprising, and are largely responsible for the great deal of interest in learning graphical

models.

In the remainder of this section, we address computational e�ciency. In particular, we

consider situations in which (relative) model posteriors can be computed e�ciently as well

as e�cient search procedures.

We note that model averaging, model selection, and selective model averaging all help

avoid over�tting|situations where models perform well on training data and poorly on new

data. In particular, the marginal likelihood balances the �t of the model structure to data

with the complexity of the model. One way to understand this fact is to note that, when

the number of cases N is large and other conditions hold, the marginal likelihood can be

approximated as follows:

p(djm) �= p(dj�̂;m)�
j�j

2
logN

where �̂ is the maximum-likelihood estimator of the data (e.g., Kass and Raftery, 1995).

The �rst quantity in this expression represents the degree to which the model �ts the

data, which increases as the model complexity increases. The second quantity, in contrast,

penalizes model complexity.

Computation of the Marginal Likelihood

Under certain conditions, the marginal likelihood of a graphical model|and hence its

relative posterior|can be computed e�ciently. In this section, we examine a particular

set of these conditions for structure learning of DAG models. We note that a similar set

of conditions hold for the learning of decomposable UG models. For details, see Lauritzen
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(1996).

Given any DAG model m, we can factor the likelihood of a single sample as follows:

p(xj�m;m) =
nY
i=1

p(xijpai; �i;m) (8)

We shall refer to each term p(xijpai; �i;m) in this equation as the local likelihood for Xi.

Also, in this equation, �i denotes the set of parameters associated with the local likelihood

for variable Xi.

The �rst condition in our set of su�cient conditions yielding e�cient computation is that

each local likelihood is in the exponential family. One example of such a factorization occurs

when each variable Xi 2 X is �nite, having ri possible values x1i ; : : : ; x
ri
i , and each local

likelihood is a collection of multinomial distributions, one distribution for each con�guration

of Pai|that is,

p(xki jpa
j
i ; �i;m) = �ijk > 0 (9)

where pa1i ; : : : ;pa
qi
i (qi =

Q
Xi2Pai

ri) denote the con�gurations ofPai, and �i = ((�ijk)
ri
k=2)

qi
j=1

are the parameters. The parameter �ij1 is given by 1�
Pri

k=2 �ijk . We shall use this example

to illustrate many of the concepts in this article. For convenience, we de�ne the vector of

parameters

�ij = (�ij2; : : : ; �ijri)

for all i and j. Examples of other exponential families can be found in Bernardo and Smith

(1994).

The second assumption for e�cient computation is one of parameter independence. In

our multinomial example, we assume that the parameter vectors �ij are mutually indepen-

dent. Note that, when this independence holds and we are given a random sample d that

contains no missing observations, the parameters remain independent:

p(�mjd;m) =
nY
i=1

qiY
j=1

p(�ij jd;m) (10)

Thus, we can update each vector of parameters �ij independently.

The third assumption is that each independent parameter set has a conjugate prior (e.g.,

Bernardo and Smith, 1994). In our multinomial example, we assume that each �ij has a

Dirichlet prior Dir(�ij j�ij1; : : : ; �ijri). In this case, we obtain

p(�ij jd;m) = Dir(�ij j�ij1 +Nij1; : : : ; �ijri +Nijri) (11)

where Nijk is the number of cases in d in which Xi = xki and Pai = pa
j
i . Note that the

collection of counts Nijk are su�cient statistics of the data for the model m.
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Under these conditions, we can compute the marginal likelihood e�ciently and in closed

form. For our multinomial example (as �rst derived in Cooper and Herskovits, 1992), we

obtain

p(djm) =
nY
i=1

qiY
j=1

�(�ij)

�(�ij +Nij)
�

riY
k=1

�(�ijk +Nijk)

�(�ijk)
(12)

where �ij =
Pri

k=1 �ijk and Nij =
Pri

k=1Nijk.

Under these same conditions, the integral in Equation 7 also can be computed e�ciently.

In our example, suppose that, for a given outcome xN+1 of XN+1, the value of Xi is x
k
i and

the con�guration of Pai is pa
j
i , where k and j depend on i. Using Equations 4, 8, and 9,

we obtain

p(xN+1jd;m) =

Z  nY
i=1

�ijk

!
p(�mjd;m) d�m

Because parameters remain independent given d, we get

p(xN+1jd;m) =
nY
i=1

Z
�ijk p(�ij jd;m) d�ij

Finally, because each integral in this product is the expectation of a Dirichlet distribution,

we have

p(xN+1jd;m) =
nY
i=1

�ijk +Nijk

�ij +Nij

(13)

To compute the relative posterior probability of a model, we must assess the structure

prior p(m) and the parameter priors p(�mjm). Unfortunately, when many models are possi-

ble, the assessment process will be intractable. Nonetheless, under certain assumptions, we

can derive the structure and parameter priors for many models from a manageable number

of direct assessments. Several authors have discussed such assumptions and corresponding

methods for deriving priors (e.g., Buntine, 1991; Cooper and Herskovits, 1992; Heckerman,

Geiger, and Chickering, 1995; Cowell et al., 1999). In the following two sections, we examine

some of these approaches.

Priors for Model Parameters

First, let us consider the assessment of priors for the parameters of DAG models. We

consider the approach of Heckerman, Geiger, and Chickering (1995)|herein, HGC|who

address the case for X where the local likelihoods are multinomial distributions. A similar

approach exists for situations where the local likelihoods are linear regressions (Heckerman

and Geiger, 1995)..

Their approach is based on two key concepts: Markov equivalence and distribution

equivalence. We say that two models for X are Markov equivalent if they represent the

same set of conditional-independence assertions for X. For example, given X = fX; Y; Zg,
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the models X ! Y ! Z, X  Y ! Z, and X  Y  Z represent only the independence

assertion that X and Z are conditionally independent given Y . Consequently, these models

are equivalent. Another example of Markov equivalence is the set of complete models on

X. A complete model is one that has no missing edge and which encodes no assertion

of conditional independence. When d contains n variables, there are n! possible complete

models, one model structure for every possible ordering of the variables. All complete

models for p(d) are Markov equivalent. In general, two models are Markov equivalent if

and only if they have the same structure ignoring arc directions and the same v-structures.

A v-structure is an ordered tuple (X; Y; Z) such that there is an arc from X to Y and from

Z to Y , but no arc between X and Z.

The concept of distribution equivalence is closely related to that of Markov equivalence.

Suppose that all models for X under consideration have local likelihoods in the family F .

This is not a restriction, per se, because F can be a large family. We say that two model

structures m1 and m2 for X are distribution equivalent with respect to (wrt) F if they can

represent the same joint probability distributions for X|that is, if, for every �m1, there

exists a �m2 such that p(xj�m1;m1) = p(xj�m2;m2), and vice versa.

Distribution equivalence wrt some F implies Markov equivalence, but the converse does

not hold. For example, when F is the family of generalized linear-regression models, the

complete model structures for n � 3 variables do not represent the same sets of distri-

butions. Nonetheless, there are families F|for example, multinomial distributions and

linear-regression models with Gaussian noise|where Markov equivalence implies distribu-

tion equivalence wrt F (see HGC). The notion of distribution equivalence is important,

because if two model structures m1 and m2 are distribution equivalent with respect to a

given F , then it is often reasonable to expect that data can not help to discriminate them.

That is, we expect p(djm1) = p(djm2) for any data set d. HGC call this property likelihood

equivalence.

Now let us return to the main issue of this section: the derivation of parameter priors

from a manageable number of assessments. HGC show that the assumption of likelihood

equivalence combined with the assumption that the �ij are mutually independent imply

that the parameters for any complete model mc must have a Dirichlet distribution with

constraints on the hyperparameters given by

�ijk = � p(xki ;pa
j
i jmc) (14)

where � is the user's equivalent sample size1, and p(xki ;pa
j
i jmc) is computed from the user's

1Discussions of equivalent sample size can be found in|for example|Heckerman, Geiger, and Chickering

(1995).
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joint probability distribution p(djmc). Note that this result is rather surprising, as the two

assumptions leading to the constrained Dirichlet solution are qualitative.

To determine the priors for parameters of incomplete models HGC use the assumption

of parameter modularity, which says that if Xi has the same parents in models m1 and m2,

then

p(�ij jm1) = p(�ij jm2)

for j = 1; : : : ; qi. They call this property parameter modularity, because it says that the

distributions for parameters �ij depend only on a portion of the graph structure|namely,

Xi and its parents.

Given the assumptions of parameter modularity and parameter independence, it is a

simple matter to construct priors for the parameters of an arbitrary model given the priors

on complete models. In particular, given parameter independence, we construct the priors

for the parameters of each node separately. Furthermore, if node Xi has parents Pai in

the given model, then we identify a complete model structure where Xi has these parents,

and use Equation 14 and parameter modularity to determine the priors for this node. The

result is that all terms �ijk for all model structures are determined by Equation 14. Thus,

from the assessments � and p(djmc), we can derive the parameter priors for all possible

model structures. We can assess p(djmc) by constructing a parameterized model called a

prior network, that encodes this joint distribution.

Priors for Model Structures

Now, let us consider the assessment of priors on structure. The simplest approach for

assigning priors to models is to assume that every model is equally likely. Of course, this

assumption is typically inaccurate and used only for the sake of convenience. A simple

re�nement of this approach is to ask the user to exclude various structures (perhaps based

on judgments of cause and e�ect), and then impose a uniform prior on the remaining

structures. We use this approach in an example described later.

Buntine (1991) describes a set of assumptions that leads to a richer yet e�cient approach

for assigning priors. The �rst assumption is that the variables can be ordered (e.g., through

a knowledge of time precedence). The second assumption is that the presence or absence of

possible arcs are mutually independent. Given these assumptions, n(n � 1)=2 probability

assessments (one for each possible arc in an ordering) determines the prior probability of

every possible model. One extension to this approach is to allow for multiple possible

orderings. One simpli�cation is to assume that the probability that an arc is absent or

present is independent of the speci�c arc in question. In this case, only one probability

assessment is required.
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An alternative approach, described by Heckerman et al. (1995) uses the prior network

described in the previous section. The basic idea is to penalize the prior probability of

any structure according to some measure of deviation between that structure and the prior

network. Heckerman et al. (1995) suggest one reasonable measure of deviation.

Search Methods

In this section, we examine search methods for identifying DAG models with high scores.

Consider the problem of �nding the best DAG model from the set of all DAG models in

which each node has no more than k parents. Unfortunately, the problem for k > 1 is

NP-hard even when we use the restrictive prior given by Equation 14 (Chickering, 1996).

Thus, researchers have used heuristic search algorithms, including greedy search, greedy

search with restarts, best-�rst search, and Monte-Carlo methods.

One consolation is that these search methods can be made more computationally e�cient

when the model score is factorable. Given a DAG model for domain X, we say that a score

for that model S(m;d) is factorable if it can be written as a product of variable-speci�c

scores:

S(m;d) =
nY
i=1

s(Xi;Pai;di) (15)

where di is the data restricted to the variables Xi and Pai. An example of a factorable score

is Equation 12 used in conjunction with any of the structure priors described previously.

Most of the commonly used search methods for DAG models also make successive arc

changes to the graph structure, and employ the property of factorability to evaluate the

merit of each change. One commonly used set of arc changes is as follows. For any pair

of variables, if there is an arc connecting them, then this arc can either be reversed or

removed. If there is no arc connecting them, then an arc can be added in either direction.

All changes are subject to the constraint that the resulting DAG contains no directed cycles.

We use E to denote the set of eligible changes to a graph, and �(e) to denote the change

in log p(djm)p(m) resulting from the modi�cation e 2 E. Given a factorable score, if an

arc to Xi is added or deleted, only c(Xi;Pai;di) need be evaluated to determine �(e). If

an arc between Xi and Xj is reversed, then only c(Xi;Pai;di) and c(Xj ;�j;dj) need be

evaluated.

One simple heuristic search algorithm is greedy hill climbing. We begin with some DAG

model. Then, we evaluate �(e) for all e 2 E, and make the change e for which �(e) is a

maximum, provided it is positive. We terminate search when there is no e with a positive

value for �(e). Candidates for the initial model include the empty graph, a random graph,

and the prior network used for the assessment of parameter and structure priors.

A potential problem with any local-search method is getting stuck at a local maximum.
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One method for escaping local maxima is greedy search with random restarts. In this

approach, we apply greedy search until we hit a local maximum. Then, we randomly perturb

the structure, and repeat the process for some manageable number of iterations. Another

method for escaping local maxima is simulated annealing. In this approach, we initialize

the system at some temperature T0. Then, we pick some eligible change e at random, and

evaluate the expression p = exp(�(e)=T0). If p > 1, then we make the change e; otherwise,

we make the change with probability p. We repeat this selection and evaluation process �

times or until we make � changes. If we make no changes in � repetitions, then we stop

searching. Otherwise, we lower the temperature by multiplying the current temperature

T0 by a decay factor 0 < 
 < 1, and continue the search process. We stop searching if

we have lowered the temperature more than � times. Thus, this algorithm is controlled by

�ve parameters: T0; �; �; 
 and �. To initialize this algorithm, we can start with the empty

graph, and make T0 large enough so that almost every eligible change is made, thus creating

a random graph. Alternatively, we may start with a lower temperature, and use one of the

initialization methods described for local search.

Another method for escaping local maxima is best-�rst search. In this approach, the

space of all models is searched systematically using a heuristic measure that determines

the next best structure to examine. Experiments (e.g., Heckerman, Geiger, and Chickering,

1995) have shown that, for a �xed amount of computation time, greedy search with random

restarts produces better models than does best-�rst search.

One important consideration for any search algorithm is the search space. The meth-

ods that we have described search through the space of DAG models. Nonetheless, when

likelihood equivalence is assumed, one can search through the space of model equivalence

classes. One bene�t of the latter approach is that the search space is smaller. One drawback

of the latter approach is that it takes longer to move from one element in the search space

to another. Experiments have shown that the two e�ects roughly cancel.

Example: College Plans

In this section, we consider an analysis of data, obtain by Sewell and Shah (1968),

regarding factors that in
uence the intention of high school students to attend college. This

analysis was given previously by Heckerman in Jordan (1999).

Sewell and Shah (1968) measured the following variables for 10,318 Wisconsin high

school seniors: Sex (SEX): male, female; Socioeconomic Status (SES): low, lower middle,

upper middle, high; Intelligence Quotient (IQ): low, lower middle, upper middle, high;

Parental Encouragement (PE): low, high; and College Plans (CP): yes, no. Our goal in this

analysis is to understand the relationships among these variables.

The data are (completely) described by the counts in Table . Each entry denotes the
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number of cases in which the �ve variables take on some particular con�guration. The

�rst entry corresponds to the con�guration SEX=male, SES=low, IQ=low, PE=low, and

CP=yes. The remaining entries correspond to con�gurations obtained by cycling through

the states of each variable such that the last variable (CP) varies most quickly. Thus, for

example, the upper (lower) half of the table corresponds to male (female) students.

To generate priors for model parameters, we used the method described earlier in this

section with an equivalent sample size of �ve and a prior network describing a uniform

distribution over X. (The results we report remain the same for equivalent sample sizes

ranging from 3 to 40.) For structure priors, we assumed that all models were equally likely,

except we excluded structures (based on causal considerations) where SEX and/or SES

had parents, and/or CP had children. We used Equation 12 to compute the marginal

likelihoods of the models. The two most likely models that we found after an exhaustive

search over all structures are shown in Figure 1. Note that the most likely model has a

posterior probability that is extremely close to one. Both models show a reasonable result:

that CP and SEX are independent, given the remaining variables.

Methods for Incomplete Data

Among the assumptions that yield a e�cient method for computing the marginal likeli-

hood, the one that is most often violated is the assumption that all variables are observed

in every case. In many situations, some variables will be hidden (i.e., never observed) or

will be observed for only a subset of the data samples. There are a variety of methods

for handling such situations|albeit at greater computational cost|including Monte-Carlo

(MC) approaches (e.g., DiCiccio, Kass, Raftery, and Wasserman, 1995), large-sample ap-

proximations (e.g., Kass and Raftery, 1995), and variational approximations (e.g., Jordan

et al. in Jordan, 1999).

In this section, we examine a simple MC approach called Gibbs sampling (e.g., MacKay

in Jordan, 1999). In general, given variables X = fX1; : : : ; Xng with some joint distribution

p(x), we can use a Gibbs sampler to approximate the expectation of a function f(x) with

respect to p(x). This approximation is made as follows. First, we choose an initial state

for each of the variables in X somehow (e.g., at random). Next, we pick some variable

Xi, unassign its current state, and compute its probability distribution given the states

of the other n � 1 variables. Then, we sample a state for Xi based on this probability

distribution, and compute f(x). Finally, we iterate the previous two steps, keeping track

of the average value of f(x). In the limit, as the number of cases approach in�nity, this

average is equal to Ep(x)(f(x)) provided two conditions are met. First, the Gibbs sampler

must be irreducible. That is, the probability distribution p(x) must be such that we can

eventually sample any possible con�guration of X given any possible initial con�guration
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of X. For example, if p(x) contains no zero probabilities, then the Gibbs sampler will be

irreducible. Second, each Xi must be chosen in�nitely often. In practice, an algorithm

for deterministically rotating through the variables is typically used. An Introduction to

Gibbs sampling and other Monte-Carlo methods|including methods for initialization and

a discussion of convergence|is given by Neal (1993).

To illustrate Gibbs sampling, consider again the case where every variable in X is �nite,

the parameters �ij for a given DAG model m are mutually independent, and each �ij has a

Dirichlet prior. In this situation, let us approximate the probability density p(�mjd;m) for

some particular con�guration of �m, given an incomplete data set d. First, we initialize the

states of the unobserved variables in each case somehow. As a result, we have a complete

random sample dc. Second, we choose some variable Xil (variable Xi in case l) that is not

observed in the original random sample D, and reassign its state according to the probability

distribution

p(x0iljdc n xil;m) =
p(x0il;dc n xiljm)P
x00

il

p(x00il;dc n xiljm)

where dc n xil denotes the data set dc with observation xil removed, and the sum in the

denominator runs over all states of variable Xil. As we have seen, the terms in the numerator

and denominator can be computed e�ciently (see Equation 12). Third, we repeat this

reassignment for all unobserved variables in d, producing a new complete random sample

d0

c. Fourth, we compute the posterior density p(�mjd0

c;m) as described in Equations 10

and 11. Finally, we iterate the previous three steps, and use the average of p(�mjd
0

c;m) as

our approximation.

Monte-Carlo approximations are also useful for computing the marginal likelihood given

incomplete data. One Monte-Carlo approach uses Bayes' theorem:

p(djm) =
p(�mjm) p(dj�m;m)

p(�mjd;m)
(16)

For any con�guration of �m, the prior term in the numerator can be evaluated directly. In

addition, the likelihood term in the numerator can be computed using DAG-model inference

(e.g., Kjaerul� in Jordan, 1999). Finally, the posterior term in the denominator can be

computed using Gibbs sampling, as we have just described.

NON-BAYESIAN APPROACHES

In this section, we consider several commonly used alternatives to the Bayesian approach

for structure learning.

One such class of algorithms mimic the search-and-score approach of Bayesian model

selection but incorporate a non-Bayesian score. Alternative scores include (1) prediction
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accuracy on new data, (2) prediction accuracy over cross-validated data sets, and (3) non-

Bayesian information criteria such as AIC.

Another class of algorithms for structure learning is the constraint-based approach de-

scribed by Pearl (2000) and Spirtes, Glymour, and Scheines (2002). In this set of algorithms,

statistical tests are performed on the data to determine independence and dependence re-

lationships among the variables. Then, search methods are used to identify one or more

models that are consistent with those relationships.

To illustrate this approach, suppose we seek to learn one or more DAGmodels given data

for three �nite variables (X1; X2; X3). Assuming each local likelihood is a collection of multi-

nomial distributions, there are eleven possible DAG models that are distinct: (1) a complete

model, (2) X1 ! X2 ! X3, (3) X1 ! X3 ! X2, (4) X2 ! X1 ! X3, (5) X1 ! X2  X3,

(6)X1 ! X3  X2, (7)X2 ! X1  X3, (8)X1 ! X2X3, (9)X1 ! X3X2, (10)X2 ! X3X1,

and (11) X1X2X3, where XiXj means there is no arc between Xi and Xj . There are other

possible models that are not listed, but each such model represents a set of distributions

that is equivalent to one of the other models above. For example, X3 ! X2 ! X1 and

model 2 are distribution equivalent.

Now, suppose that statistical tests applied to the data reveal that the only independence

relationship is that X1 and X3 are independent. Only models 1 and 5 can exhibit only this

independence. Furthermore, if we use parameter prior assignments of the form described

earlier in this section, then model 1 will exhibit this independence with probably zero.

Consequently, we conclude that model 5 is correct (with probability one).

One drawback of the constraint-based approach is that any statistical test will be an

approximation for �nite data; and errors in the tests may lead the search mechanism to (1)

conclude that the found relationships are inconsistent or (2) return erroneous models. One

advantage of the approach over most search-and-score methods is that more structures can

be considered for a �xed amount computation, because the results of some statistical tests

can greatly constrain model search.
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Table 1: Su�cient statistics for the Sewall and Shah (1968) study.

4 349 13 64 9 207 33 72 12 126 38 54 10 67 49 43

2 232 27 84 7 201 64 95 12 115 93 92 17 79 119 59

8 166 47 91 6 120 74 110 17 92 148 100 6 42 198 73

4 48 39 57 5 47 123 90 9 41 224 65 8 17 414 54

5 454 9 44 5 312 14 47 8 216 20 35 13 96 28 24

11 285 29 61 19 236 47 88 12 164 62 85 15 113 72 50

7 163 36 72 13 193 75 90 12 174 91 100 20 81 142 77

6 50 36 58 5 70 110 76 12 48 230 81 13 49 360 98

Reproduced by permission from the University of Chicago Press. c
1968 by The University

of Chicago. All rights reserved.
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Figure 1: The a posteriori most likely models.
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