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The Expectation Maximization (EM) algorithm

Given a set of observed (visible) variables V', a set of unobserved (hidden / latent / missing)
variables H, and model parameters 6, optimize the log likelihood:

£(60) = log p(V]0) = log / p(H,V|6)dH, (1)

where we have written the marginal for the visibles in terms of an integral over the joint
distribution for hidden and visible variables.

Using Jensen's inequality for any distribution of hidden states q(H) we have:

p(H,V|0)
q(H)

p(H,V|0)
q(H)

dH = F(q,0), (2)

Ezlog/Q(H) dHZ/Q(H)log

defining the F(q, ) functional, which is a lower bound on the log likelihood.

In the EM algorithm, we alternately optimize F(q,0) wrt ¢ and @, and we can prove that
this will never decrease L.



The E and M steps of EM

The lower bound on the log likelihood:

(H,V|0)
q(H)

F(q,0) = / 4(H) log? dH — / o(H)log p(H, V|0)dH + H(q),  (3)

where H(q) = —/q(H) log q(H)dH is the entropy of q. We iteratively alternate:

E step: optimize F(q, ) wrt the distribution over hidden variables given the parameters:

q(k>(H) — arg&rél)ax ]:(q(H), H(k_l)). (4)
q

M step: maximize F(q,0) wrt the parameters given the hidden distribution:

9k) .= argmax j’:(q(k)(H),H) = argmax /q(k>(H) logp(H,V|0)dH, (5)
0 0

which is equivalent to optimizing the expected complete-data likelihood p(H, V' |#), since
the entropy of ¢(H) does not depend on 6.



EM as Coordinate Ascent in F
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The Intuition Behind EM

E step: fill in values for the hidden variables according to their posterior probabilities

M step: learn model as if hidden variables were not hidden



The EM algorithm never decreases the log likelihood

The difference between the cost functions:

H,V10)
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B p(H|V,0) .
- —/q(H)log ) = KL(q(H),p(H|V,0)),

is called the Kullback-Liebler divergence; it is non-negative and only zero if and only if
q(H) = p(H|V,0) (thus this is the E step). Although we are working with the wrong cost
function, the likelihood is still increased in every iteration:

L(@(k—l)) — ]:(q(k),g(k—l)) < ]:(q(k:),g(k)) < L’(g(k))’
E step M step Jensen

where the first equality holds because of the E step, and the first inequality comes from
the M step and the final inequality from Jensen. Usually EM converges to a local optimum
of L (although there are exceptions).



The KL(q(x),p(x)) is non-negative and zero iff Vz : p(z) = ¢(z)

First let’'s consider discrete distributions; the Kullback-Liebler divergence is:

KL(g,p) =) qilog %-

To find the distribution ¢ which minimizes KL(q, p) we add a lagrange multiplier to enforce
the normalization:

E=KL(qp) + A1 =) a) = Zqilog% A=),

We then take partial derives and set to zero:

OF \
o5, — losla) —log(pi) +1-A=0=g; =piexp(A —1)
22 ¢ = i = Di-




Why KL(q,p) is non-negative and zero iff p(z) = q(z) . . .

Check that the curvature (Hessian) is positive (definite), corresponding to a minimum:

0*FE 1 0*E
= — >0, = 0,
0¢:0q;  qi 36]7;(9%‘

showing that ¢; = p; is a genuine minimum. At the minimum is it easily verified that

KL(p,p) = 0.

A similar proof can be done for continuous distributions, the partial derivatives being
substituted by functional derivatives.



Partial M steps and Partial E steps
Partial M steps: The proof holds even if we just increase F wrt 6 rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).
Partial E steps: We can also just increase F wrt to some of the gs.
For example, sparse or online versions of the EM algorithm would compute the posterior

for a subset of the data points or as the data arrives, respectively. You can also update the
posterior over a subset of the hidden variables, while holding others fixed...



EM for exponential families

Defn: p is in the exponential family for X = (H, V') if it can be written:
p(X16) = b(X) exp{85(X)}/a(6)

where a(f) = [b(X)exp{0's(X)}dX

E step: q(H) = p(H|V,0)

M step: 0(%) := argmax F(q,0)
7

F(4,0) = / o(H) log p(H, V|8)dH — H(q)

— /q(H) 0" s(X) — log a(6)]dH + const

1 0
It is easy to verify that: 0 og;u( ) = F[s(X)|0]
oOF
Therefore, M step solves: 0 = Eqm[s(X)] — E[s(X)|0] =0



The Gaussian mixture model (E-step)

In the Gaussian mixture density model, the densities of a data point x is:

1

p(x|0) = Zp = k|0)p(x|H =k, 0) ocZ—eXp 52
k

(m - :uk)2)7

where 6 is the collection of parameters: means py, variances o2 and mixing proportions
Tk :p(H — k’@)

The hidden variables H(®) indicate which component observation (%) belongs to.

In the E-step, compute the posterior for H(®) given the current parameters:

g(H9) = p(H9)29),0) o p(z'9|H, 0)p(H|0)
Tl 1

P = g(H® = k) O_—kexp(—r‘k( 24 — 1)?)  (responsibilities)

with the normalization such that >, r, r{® =1



The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since H is discrete):

_ (c) e 2
= ) q(H)logp(H|0) p(z|H,0)] = z};rk [10g7rk—10g0k—2?%(x”—uk)]

Optimization is done by setting the partial derivatives of E to zero:
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where A\ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.



Factor Analysis

K
Linear generative model: y4 = Z ANgr v + €4

N\ k=1

e 1} are independent A/(0,1) Gaussian factors
e ¢, are independent AN(0, V44) Gaussian noise

(- T

So, y is Gaussian with: p(y) = /p(x)p(y\x)dx = N(0,AA" + W)

where A is a D x K matrix, and ¥ is diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high dimensional data
that captures the correlation structure of the data.



EM for Factor Analysis

The model for y:
A p(y|0) = [ p(x|0)p(y|x,0)dx = N(0,AA" + D)

Model parameters: 6 = {A, U}.

E step: For each data point y,,, compute the posterior distribution of hidden factors given
the observed data: ¢,(x) = p(X|yn, 0:)-

M step: Find the 0,1 that maximises F(q,0):
F@.6) = 3 [ anlo0) Borp(xl6) + logp(yalx.6) ~ ogan () dx

= 3 [ 0a60 logp(x10) + loxplyae,0)] dx + ¢



The E step for Factor Analysis

E step: For each data point y,,, compute the posterior distribution of hidden factors given
the observed data: g, (x) = p(x|yn, 0) = p(x. y2l0)/p(ynl6)

Tactic: write p(x,y,|0), consider y,, to be fixed. What is this as a function of x?

p(X, Yn) — p(X)p(Yn‘X)
= (2m)7 % exp{—%XTX} 27 0|2 eXp{—%(yn — Ax) ' Uy, — Ax)}
— CcX exp{—%[XTX + (yn — AX)T\P_l(Yn — Ax)]}
1

= ¢ xexp{—gfx (I + AT A)x - 2x AUy, ]}

1
¢’ X exp{—i[xTE_lx —2x'S 7+ "))

SoX =T +A" U A" =T - pBAand p =AUy, = By,. Where 3 =XA"T1
Note that u is a linear function of y,, and X does not depend on y.,,.



The M step for Factor Analysis

M step: Find 0;11 maximising F =Y [ ¢n(x) [log p(x]6) + log p(yn|x,0)] dx + ¢

1 1 1 _
log p(x[0)+ log p(ya|x,0) = c = ox'x = Slog [W] = (yn — Ax) "W (yn — Ax)
1 1,
=c — §log Ul — i_ynT\IJ_lyn — 2y, UTIAx + x AT UTAX]
1 1.
=c — §log U| — §_ynT\I!_1yn — 2y, UTIAx 4+ tr(A T U Axx )]

Taking expectations over g, (x). . .

1 1
=" — S log [ W] — Sfyn " U7y — 2yn T A + tr(ATOT A (g + X))

Note that we don't need to know everything about ¢, just the expectations of x and xx'

under ¢ (i.e. the expected sufficient statistics).



The M step for Factor Analysis (cont.)

N 1
F=cd—— log ‘\Ij‘ 9 Z [yﬂT\Ij_1Yn — 2YnT\IJ_1A,un + tr(AT\Ij_lA(,unlunT + Z))]

n
Taking derivatives w.r.t. A and U1, using atr(AB) = A" and M%LA'A' = A"

OF —1 T —1 T
= zn:ynun — P A<N2+zn:unun = (

A= (Z Ynbn ) (N Sy MMJ)

OF
or—-1_ 9 9 Z Y'nYn - A,uny_n—r - Yn,unTAT + A(:un,un—r + E)AT}
-1 T T TAT T T
v = N; [YnYn — Apnyn = Ynbin A+ A(pnptn +3)A }
U= AZJAT+i Z(yn — Apin) (yn — Apin) ' (squared residuals)
N

Note: we should actually only take derivarives w.r.t. ¥ ;4 since ¥ is diagonal.
When > — 0 these become the equations for linear regression!



Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

p(yl0) = Zﬂ'k (g, AgA ' g + )

where 7y is the mixing proportion for FA k, uy is its centre, Ay is its “factor loading
matrix”, and W is a common sensor noise model. 0 = {{my, px, Ax}r=1..x, ¥V}
We can think of this model as having two sets of hidden latent variables:

e A discrete indicator variable s,, € {1,... K}
e For each factor analyzer, a continous factor vector x,, , € R Lk

b518) = 3 plsul6) [ plxlsnOp(yalx.5,.0) dx

Sn_].

As before, an EM algorithm can be derived for this model:
E step: Infer joint distribution of latent variables, p(x,,, $,|yn, 0)

M step: Maximize F with respect to 6.



Proof of the Matrix Inversion Lemma

(A+XBX)'=A""—A'xXxB'+x'a'x)'x"Aa™!

Need to prove:
(A_l _AT'X(BT' + XTA_lX)_lXTA_l) (A+ XBXT) =1
Expand:
I+ A 'XBX' A ' XB '+ x'A7' X)X AT Xx(BT+x"AT'X) ' XA xBXx
Regroup:
— I+ AT'X (BXT (Bl XxTA'x)'xT (B 4 XTA_lX)_lXTA_lXBXT)
— I+ AT'X (BXT B+ xTA'x)'B'BXT — (B '+ XTA_lX)_lXTA_lXBXT)
— I+ AT'X (BXT (B xTA'x) (B & XTA_lX)BXT)

= I+A'X(BX'—-BX')=1I
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