

Unsupervised Learning

The EM Algorithm

Zoubin Ghahramani

`zoubin@gatsby.ucl.ac.uk`

**Gatsby Computational Neuroscience Unit, and
MSc in Intelligent Systems, Dept Computer Science
University College London**

Autumn 2003

The Expectation Maximization (EM) algorithm

Given a set of observed (visible) variables V , a set of unobserved (hidden / latent / missing) variables H , and model parameters θ , optimize the log likelihood:

$$\mathcal{L}(\theta) = \log p(V|\theta) = \log \int p(H, V|\theta) dH, \quad (1)$$

where we have written the marginal for the visibles in terms of an integral over the joint distribution for hidden and visible variables.

Using *Jensen's inequality* for **any** distribution of hidden states $q(H)$ we have:

$$\mathcal{L} = \log \int q(H) \frac{p(H, V|\theta)}{q(H)} dH \geq \int q(H) \log \frac{p(H, V|\theta)}{q(H)} dH = \mathcal{F}(q, \theta), \quad (2)$$

defining the $\mathcal{F}(q, \theta)$ functional, which is a lower bound on the log likelihood.

In the EM algorithm, we alternately optimize $\mathcal{F}(q, \theta)$ wrt q and θ , and we can prove that this will never decrease \mathcal{L} .

The E and M steps of EM

The lower bound on the log likelihood:

$$\mathcal{F}(q, \theta) = \int q(H) \log \frac{p(H, V | \theta)}{q(H)} dH = \int q(H) \log p(H, V | \theta) dH + \mathcal{H}(q), \quad (3)$$

where $\mathcal{H}(q) = - \int q(H) \log q(H) dH$ is the **entropy** of q . We iteratively alternate:

E step: optimize $\mathcal{F}(q, \theta)$ wrt the distribution over hidden variables given the parameters:

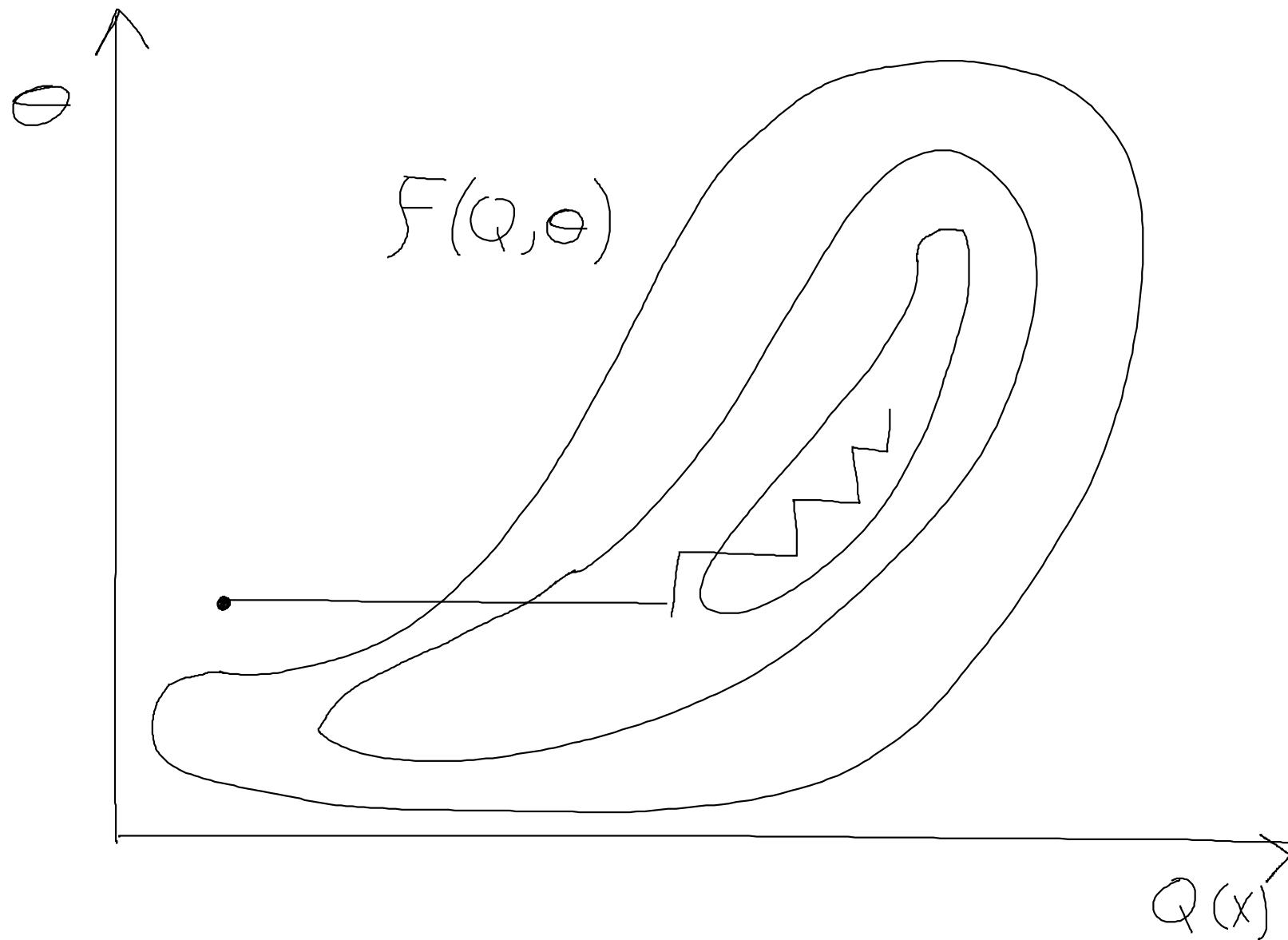
$$q^{(k)}(H) := \operatorname{argmax}_{q(H)} \mathcal{F}(q(H), \theta^{(k-1)}). \quad (4)$$

M step: maximize $\mathcal{F}(q, \theta)$ wrt the parameters given the hidden distribution:

$$\theta^{(k)} := \operatorname{argmax}_{\theta} \mathcal{F}(q^{(k)}(H), \theta) = \operatorname{argmax}_{\theta} \int q^{(k)}(H) \log p(H, V | \theta) dH, \quad (5)$$

which is equivalent to optimizing the expected complete-data likelihood $p(H, V | \theta)$, since the **entropy** of $q(H)$ does not depend on θ .

EM as Coordinate Ascent in \mathcal{F}



The Intuition Behind EM

E step: fill in values for the hidden variables according to their posterior probabilities

M step: learn model as if hidden variables were not hidden

The EM algorithm never decreases the log likelihood

The difference between the cost functions:

$$\begin{aligned}\mathcal{L}(\theta) - \mathcal{F}(q, \theta) &= \log p(V|\theta) - \int q(H) \log \frac{p(H, V|\theta)}{q(H)} dH \\ &= \log p(V|\theta) - \int q(H) \log \frac{p(H|V, \theta)p(V|\theta)}{q(H)} dH \\ &= - \int q(H) \log \frac{p(H|V, \theta)}{q(H)} dH = \mathcal{KL}(q(H), p(H|V, \theta)),\end{aligned}$$

is called the Kullback-Liebler divergence; it is non-negative and only zero if and only if $q(H) = p(H|V, \theta)$ (thus this is the E step). Although we are working with the wrong cost function, the likelihood is still increased in every iteration:

$$\mathcal{L}(\theta^{(k-1)}) \underset{\text{E step}}{=} \mathcal{F}(q^{(k)}, \theta^{(k-1)}) \underset{\text{M step}}{\leq} \mathcal{F}(q^{(k)}, \theta^{(k)}) \underset{\text{Jensen}}{\leq} \mathcal{L}(\theta^{(k)}),$$

where the first equality holds because of the E step, and the first inequality comes from the M step and the final inequality from Jensen. Usually EM converges to a local optimum of \mathcal{L} (although there are exceptions).

The $\mathcal{KL}(q(x), p(x))$ is non-negative and zero iff $\forall x : p(x) = q(x)$

First let's consider discrete distributions; the Kullback-Liebler divergence is:

$$\mathcal{KL}(q, p) = \sum_i q_i \log \frac{q_i}{p_i}.$$

To find the distribution q which minimizes $\mathcal{KL}(q, p)$ we add a lagrange multiplier to enforce the normalization:

$$E = \mathcal{KL}(q, p) + \lambda(1 - \sum_i q_i) = \sum_i q_i \log \frac{q_i}{p_i} + \lambda(1 - \sum_i q_i).$$

We then take partial derives and set to zero:

$$\left. \begin{aligned} \frac{\partial E}{\partial q_i} &= \log(q_i) - \log(p_i) + 1 - \lambda = 0 \Rightarrow q_i = p_i \exp(\lambda - 1) \\ \frac{\partial E}{\partial \lambda} &= 1 - \sum_i q_i = 0 \Rightarrow \sum_i q_i = 1 \end{aligned} \right\} \Rightarrow q_i = p_i.$$

Why $\mathcal{KL}(q, p)$ is non-negative and zero iff $p(x) = q(x)$. . .

Check that the curvature (Hessian) is positive (definite), corresponding to a minimum:

$$\frac{\partial^2 E}{\partial q_i \partial q_i} = \frac{1}{q_i} > 0, \quad \frac{\partial^2 E}{\partial q_i \partial q_j} = 0,$$

showing that $q_i = p_i$ is a genuine minimum. At the minimum is it easily verified that $\mathcal{KL}(p, p) = 0$.

A similar proof can be done for continuous distributions, the partial derivatives being substituted by functional derivatives.

Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just *increase* \mathcal{F} wrt θ rather than maximize. (Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

Partial E steps: We can also just *increase* \mathcal{F} wrt to some of the q s.

For example, sparse or online versions of the EM algorithm would compute the posterior for a subset of the data points or as the data arrives, respectively. You can also update the posterior over a subset of the hidden variables, while holding others fixed...

EM for exponential families

Defn: p is in the exponential family for $X = (H, V)$ if it can be written:

$$p(X|\theta) = b(X) \exp\{\theta^\top s(X)\}/\alpha(\theta)$$

where $\alpha(\theta) = \int b(X) \exp\{\theta^\top s(X)\} dX$

E step: $q(H) = p(H|V, \theta)$

M step: $\theta^{(k)} := \operatorname{argmax}_\theta \mathcal{F}(q, \theta)$

$$\begin{aligned} \mathcal{F}(q, \theta) &= \int q(H) \log p(H, V|\theta) dH - \mathcal{H}(q) \\ &= \int q(H) [\theta^\top s(X) - \log \alpha(\theta)] dH + \text{const} \end{aligned}$$

It is easy to verify that:

$$\frac{\partial \log \alpha(\theta)}{\partial \theta} = E[s(X)|\theta]$$

Therefore, M step solves: $\frac{\partial \mathcal{F}}{\partial \theta} = E_{q(H)}[s(X)] - E[s(X)|\theta] = 0$

The Gaussian mixture model (E-step)

In the Gaussian mixture density model, the densities of a data point x is:

$$p(x|\theta) = \sum_{k=1}^K p(H=k|\theta)p(x|H=k, \theta) \propto \sum_{k=1}^K \frac{\pi_k}{\sigma_k} \exp\left(-\frac{1}{2\sigma_k^2}(x - \mu_k)^2\right),$$

where θ is the collection of parameters: means μ_k , variances σ_k^2 and mixing proportions $\pi_k = p(H=k|\theta)$.

The hidden variables $H^{(c)}$ indicate which component observation $x^{(c)}$ belongs to.

In the E-step, compute the posterior for $H^{(c)}$ given the current parameters:

$$\begin{aligned} q(H^{(c)}) &= p(H^{(c)}|x^{(c)}, \theta) \propto p(x^{(c)}|H^{(c)}, \theta)p(H^{(c)}|\theta) \\ r_k^{(c)} \equiv q(H^{(c)} = k) &\propto \frac{\pi_k}{\sigma_k} \exp\left(-\frac{1}{2\sigma_k^2}(x^{(c)} - \mu_k)^2\right) \quad (\text{responsibilities}) \end{aligned}$$

with the normalization such that $\sum_k r_k^{(c)} = 1$.

The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since H is discrete):

$$E = \sum q(H) \log[p(H|\theta) p(x|H, \theta)] = \sum_{c,k} r_k^{(c)} \left[\log \pi_k - \log \sigma_k - \frac{1}{2\sigma_k^2} (x^{(c)} - \mu_k)^2 \right].$$

Optimization is done by setting the partial derivatives of E to zero:

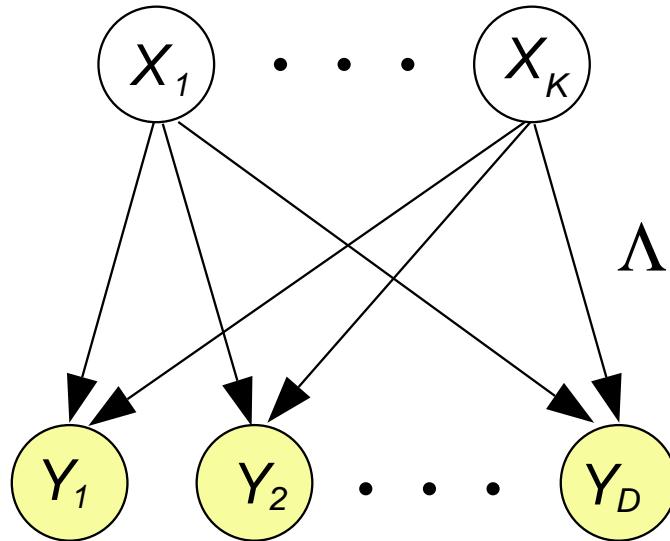
$$\frac{\partial E}{\partial \mu_k} = \sum_c r_k^{(c)} \frac{(x^{(c)} - \mu_k)}{2\sigma_k^2} = 0 \Rightarrow \mu_k = \frac{\sum_c r_k^{(c)} x^{(c)}}{\sum_c r_k^{(c)}},$$

$$\frac{\partial E}{\partial \sigma_k} = \sum_c r_k^{(c)} \left[-\frac{1}{\sigma_k} + \frac{(x^{(c)} - \mu_k)^2}{\sigma_k^3} \right] = 0 \Rightarrow \sigma_k^2 = \frac{\sum_c r_k^{(c)} (x^{(c)} - \mu_k)^2}{\sum_c r_k^{(c)}},$$

$$\frac{\partial E}{\partial \pi_k} = \sum_c r_k^{(c)} \frac{1}{\pi_k}, \quad \frac{\partial E}{\partial \pi_k} + \lambda = 0 \Rightarrow \pi_k = \frac{1}{n} \sum_c r_k^{(c)},$$

where λ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.

Factor Analysis



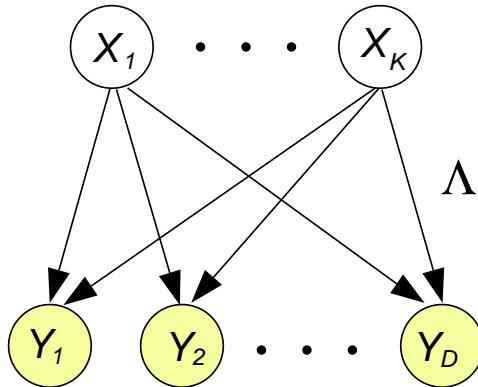
Linear generative model: $y_d = \sum_{k=1}^K \Lambda_{dk} x_k + \epsilon_d$

- x_k are independent $\mathcal{N}(0, 1)$ Gaussian **factors**
- ϵ_d are independent $\mathcal{N}(0, \Psi_{dd})$ Gaussian **noise**
- $K < D$

So, \mathbf{y} is Gaussian with: $p(\mathbf{y}) = \int p(\mathbf{x})p(\mathbf{y}|\mathbf{x})d\mathbf{x} = \mathcal{N}(0, \Lambda\Lambda^\top + \Psi)$
where Λ is a $D \times K$ matrix, and Ψ is diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high dimensional data that captures the **correlation structure** of the data.

EM for Factor Analysis



The model for \mathbf{y} :

$$p(\mathbf{y}|\theta) = \int p(\mathbf{x}|\theta)p(\mathbf{y}|\mathbf{x}, \theta)d\mathbf{x} = \mathcal{N}(0, \Lambda\Lambda^\top + \Psi)$$

Model parameters: $\theta = \{\Lambda, \Psi\}$.

E step: For each data point \mathbf{y}_n , compute the posterior distribution of hidden factors given the observed data: $q_n(\mathbf{x}) = p(\mathbf{x}|\mathbf{y}_n, \theta_t)$.

M step: Find the θ_{t+1} that maximises $\mathcal{F}(q, \theta)$:

$$\begin{aligned}\mathcal{F}(q, \theta) &= \sum_n \int q_n(\mathbf{x}) [\log p(\mathbf{x}|\theta) + \log p(\mathbf{y}_n|\mathbf{x}, \theta) - \log q_n(\mathbf{x})] d\mathbf{x} \\ &= \sum_n \int q_n(\mathbf{x}) [\log p(\mathbf{x}|\theta) + \log p(\mathbf{y}_n|\mathbf{x}, \theta)] d\mathbf{x} + c.\end{aligned}$$

The E step for Factor Analysis

E step: For each data point \mathbf{y}_n , compute the posterior distribution of hidden factors given the observed data: $q_n(\mathbf{x}) = p(\mathbf{x}|\mathbf{y}_n, \theta) = p(\mathbf{x}, \mathbf{y}_n|\theta)/p(\mathbf{y}_n|\theta)$

Tactic: write $p(\mathbf{x}, \mathbf{y}_n|\theta)$, consider \mathbf{y}_n to be fixed. What is this as a function of \mathbf{x} ?

$$\begin{aligned} p(\mathbf{x}, \mathbf{y}_n) &= p(\mathbf{x})p(\mathbf{y}_n|\mathbf{x}) \\ &= (2\pi)^{-\frac{K}{2}} \exp\left\{-\frac{1}{2}\mathbf{x}^\top \mathbf{x}\right\} |2\pi\Psi|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mathbf{y}_n - \Lambda\mathbf{x})^\top \Psi^{-1}(\mathbf{y}_n - \Lambda\mathbf{x})\right\} \\ &= c \times \exp\left\{-\frac{1}{2}[\mathbf{x}^\top \mathbf{x} + (\mathbf{y}_n - \Lambda\mathbf{x})^\top \Psi^{-1}(\mathbf{y}_n - \Lambda\mathbf{x})]\right\} \\ &= c' \times \exp\left\{-\frac{1}{2}[\mathbf{x}^\top (I + \Lambda^\top \Psi^{-1} \Lambda)\mathbf{x} - 2\mathbf{x}^\top \Lambda^\top \Psi^{-1} \mathbf{y}_n]\right\} \\ &= c'' \times \exp\left\{-\frac{1}{2}[\mathbf{x}^\top \Sigma^{-1} \mathbf{x} - 2\mathbf{x}^\top \Sigma^{-1} \mu + \mu^\top \Sigma^{-1} \mu]\right\} \end{aligned}$$

So $\Sigma = (I + \Lambda^\top \Psi^{-1} \Lambda)^{-1} = I - \beta\Lambda$ and $\mu = \Sigma \Lambda^\top \Psi^{-1} \mathbf{y}_n = \beta \mathbf{y}_n$. Where $\beta = \Sigma \Lambda^\top \Psi^{-1}$. Note that μ is a linear function of \mathbf{y}_n and Σ does not depend on \mathbf{y}_n .

The M step for Factor Analysis

M step: Find θ_{t+1} maximising $\mathcal{F} = \sum_n \int q_n(\mathbf{x}) [\log p(\mathbf{x}|\theta) + \log p(\mathbf{y}_n|\mathbf{x}, \theta)] d\mathbf{x} + c$

$$\begin{aligned}\log p(\mathbf{x}|\theta) + \log p(\mathbf{y}_n|\mathbf{x}, \theta) &= c - \frac{1}{2}\mathbf{x}^\top \mathbf{x} - \frac{1}{2}\log |\Psi| - \frac{1}{2}(\mathbf{y}_n - \Lambda \mathbf{x})^\top \Psi^{-1}(\mathbf{y}_n - \Lambda \mathbf{x}) \\ &= c' - \frac{1}{2}\log |\Psi| - \frac{1}{2}[\mathbf{y}_n^\top \Psi^{-1} \mathbf{y}_n - 2\mathbf{y}_n^\top \Psi^{-1} \Lambda \mathbf{x} + \mathbf{x}^\top \Lambda^\top \Psi^{-1} \Lambda \mathbf{x}] \\ &= c' - \frac{1}{2}\log |\Psi| - \frac{1}{2}[\mathbf{y}_n^\top \Psi^{-1} \mathbf{y}_n - 2\mathbf{y}_n^\top \Psi^{-1} \Lambda \mathbf{x} + \text{tr}(\Lambda^\top \Psi^{-1} \Lambda \mathbf{x} \mathbf{x}^\top)]\end{aligned}$$

Taking expectations over $q_n(\mathbf{x}) \dots$

$$= c' - \frac{1}{2}\log |\Psi| - \frac{1}{2}[\mathbf{y}_n^\top \Psi^{-1} \mathbf{y}_n - 2\mathbf{y}_n^\top \Psi^{-1} \Lambda \mu_n + \text{tr}(\Lambda^\top \Psi^{-1} \Lambda (\mu_n \mu_n^\top + \Sigma))]$$

Note that we don't need to know everything about q , just the expectations of \mathbf{x} and $\mathbf{x}\mathbf{x}^\top$ under q (i.e. the expected sufficient statistics).

The M step for Factor Analysis (cont.)

$$\mathcal{F} = c' - \frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n [\mathbf{y}_n^\top \Psi^{-1} \mathbf{y}_n - 2\mathbf{y}_n^\top \Psi^{-1} \Lambda \mu_n + \text{tr}(\Lambda^\top \Psi^{-1} \Lambda (\mu_n \mu_n^\top + \Sigma))]$$

Taking derivatives w.r.t. Λ and Ψ^{-1} , using $\frac{\partial \text{tr}(AB)}{\partial B} = A^\top$ and $\frac{\partial \log |A|}{\partial A} = A^{-\top}$:

$$\frac{\partial \mathcal{F}}{\partial \Lambda} = \Psi^{-1} \sum_n \mathbf{y}_n \mu_n^\top - \Psi^{-1} \Lambda \left(N\Sigma + \sum_n \mu_n \mu_n^\top \right) = 0$$

$$\hat{\Lambda} = \left(\sum_n \mathbf{y}_n \mu_n^\top \right) \left(N\Sigma + \sum_n \mu_n \mu_n^\top \right)^{-1}$$

$$\frac{\partial \mathcal{F}}{\partial \Psi^{-1}} = \frac{N}{2} \Psi - \frac{1}{2} \sum_n [\mathbf{y}_n \mathbf{y}_n^\top - \Lambda \mu_n \mathbf{y}_n^\top - \mathbf{y}_n \mu_n^\top \Lambda^\top + \Lambda (\mu_n \mu_n^\top + \Sigma) \Lambda^\top]$$

$$\hat{\Psi} = \frac{1}{N} \sum_n [\mathbf{y}_n \mathbf{y}_n^\top - \Lambda \mu_n \mathbf{y}_n^\top - \mathbf{y}_n \mu_n^\top \Lambda^\top + \Lambda (\mu_n \mu_n^\top + \Sigma) \Lambda^\top]$$

$$\hat{\Psi} = \Lambda \Sigma \Lambda^\top + \frac{1}{N} \sum_n (\mathbf{y}_n - \Lambda \mu_n) (\mathbf{y}_n - \Lambda \mu_n)^\top \quad (\text{squared residuals})$$

Note: we should actually only take derivatives w.r.t. Ψ_{dd} since Ψ is diagonal.
When $\Sigma \rightarrow 0$ these become the equations for linear regression!

Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

$$p(\mathbf{y}|\theta) = \sum_k \pi_k \mathcal{N}(\mu_k, \Lambda_k \Lambda_k^\top + \Psi)$$

where π_k is the mixing proportion for FA k , μ_k is its centre, Λ_k is its “factor loading matrix”, and Ψ is a common sensor noise model. $\theta = \{\{\pi_k, \mu_k, \Lambda_k\}_{k=1\dots K}, \Psi\}$
We can think of this model as having *two* sets of hidden latent variables:

- A discrete indicator variable $s_n \in \{1, \dots, K\}$
- For each factor analyzer, a continuous factor vector $\mathbf{x}_{n,k} \in \mathcal{R}^{D_k}$

$$p(\mathbf{y}|\theta) = \sum_{s_n=1}^K p(s_n|\theta) \int p(\mathbf{x}|s_n, \theta) p(\mathbf{y}_n|\mathbf{x}, s_n, \theta) d\mathbf{x}$$

As before, an EM algorithm can be derived for this model:

E step: Infer joint distribution of latent variables, $p(\mathbf{x}_n, s_n | \mathbf{y}_n, \theta)$

M step: Maximize \mathcal{F} with respect to θ .

Proof of the Matrix Inversion Lemma

$$(A + XBX^\top)^{-1} = A^{-1} - A^{-1}X(B^{-1} + X^\top A^{-1}X)^{-1}X^\top A^{-1}$$

Need to prove:

$$\left(A^{-1} - A^{-1}X(B^{-1} + X^\top A^{-1}X)^{-1}X^\top A^{-1} \right) (A + XBX^\top) = I$$

Expand:

$$I + \cancel{A^{-1}XBX^\top} - \cancel{A^{-1}X(B^{-1} + X^\top A^{-1}X)^{-1}X^\top} - \cancel{A^{-1}X(B^{-1} + X^\top A^{-1}X)^{-1}X^\top A^{-1}XBX^\top}$$

Regroup:

$$\begin{aligned} &= I + \cancel{A^{-1}X} \left(BX^\top - (B^{-1} + X^\top A^{-1}X)^{-1}X^\top - (B^{-1} + X^\top A^{-1}X)^{-1}X^\top A^{-1}XBX^\top \right) \\ &= I + A^{-1}X \left(BX^\top - (B^{-1} + X^\top A^{-1}X)^{-1} \cancel{B^{-1}BX^\top} - (B^{-1} + X^\top A^{-1}X)^{-1}X^\top A^{-1}XBX^\top \right) \\ &= I + A^{-1}X \left(BX^\top - (B^{-1} + X^\top A^{-1}X)^{-1} (\cancel{B^{-1}} + X^\top A^{-1}X) BX^\top \right) \\ &= I + A^{-1}X(BX^\top - BX^\top) = I \end{aligned}$$

Further Readings

- David MacKay's Textbook, Chapters 20, 22 and 23
<http://www.inference.phy.cam.ac.uk/mackay/itprnn/>
- Ghahramani, Z. and Hinton, G.E. (1996) The EM Algorithm for Mixtures of Factor Analyzers. University of Toronto Technical Report CRG-TR-96-1
<http://www.gatsby.ucl.ac.uk/~zoubin/papers/tr-96-1.ps.gz>
- Minka, T. Tutorial on linear algebra.
<http://www.stat.cmu.edu/~minka/papers/matrix.html>
- Roweis, S.T. and Ghahramani, Z. (1999) A Unifying Review of Linear Gaussian Models. Neural Computation 11(2). Sections 1-5.3 and 6-6.1. See also Appendix A.1-A.2.
<http://www.gatsby.ucl.ac.uk/~zoubin/abstracts/lds.abs.html>
- Welling, M. (2000) Linear models. class notes.
<http://www.gatsby.ucl.ac.uk/~zoubin/course03/PCA.ps> or [/PCA.pdf](http://www.gatsby.ucl.ac.uk/~zoubin/course03/PCA.pdf)