Unsupervised Learning

Lecture 6: Hierarchical and Nonlinear Models

Zoubin Ghahramani
zoubin@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc in Intelligent Systems, Dept Computer Science
University College London

Autumn 2003



Why we need nonlinearities
Linear systems have limited modelling capability.

Consider linear-Gaussian state-space models.
Only certain dynamics can be modelled.



Why we need hierarchical models

Many generative processes can be naturally described at different levels of detail.

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

/ (retinal image, i.e. pixels)

Biology seems to have developed hierarchical representations.




Why we need distributed representations

Consider a hidden Markov model.

To capture N bits of information about the history of the sequence,
a HMM requires K = 2% states!



Factorial Hidden Markov Models
and Dynamic Bayesian Networks

These are hidden Markov models with many state variables
(i.e. a distributed representation of the state).






Independent Components Analysis

e P(x) is non-Gaussian.

e Equivalently P(xy) is Gaussian, with a nonlinearity g(-):

K
ya =Y _ Aar g(xx) + €4
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e For K = D, and observation noise assumed to be zero, inference and learning are easy
(standard ICA). Many extensions are possible (e.g. with noise = IFA).



ICA Nonlinearity

Generative model: x = g(w) y=Ax+v
where w and v are zero-mean Gaussian noises with covariances I and R respectively.
The density of x can be written in terms of g(-),
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generates vectors x in which each component is distributed
according to 1/(m cosh(z)). e N T

So, ICA can be seen either as a linear generative model with non-Gaussian priors for the
hidden variables, or as a nonlinear generative model with Gaussian priors for the hidden
variables.
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Natural Scenes

Figure 5: (a) Sample of 1/f Gaussian noise; (b) whitened natural image.



Natural Scenes
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Figure 7: Example basis functions derived using sparseness criterion see (Olshausen &
Field 1996).



Natural Movies
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Figure 10: Independent components of natural movies. Shown are four space-time basis
functions (rows labeled 'IC’) with the corresponding analysis functions (rows labeled

'ICE’) which would be convolved with a movie to compute a neuron’s output (from van
Hateren & Ruderman 1998).

Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annual Review of
Neuroscience, 24.



Applications of ICA and Related Methods

Separating auditory sources
Analysis of EEG data
Analysis of functional MRI data

Natural scene analysis



ICA: The magic of unmixing

Mixture of Heavy Tailed Sources Mixture of Light Tailed Sources




How ICA Relates to Factor Analysis
and Other Models

Factor Analysis (FA): Assumes the factors are Gaussian.

Principal Components Analysis (PCA): Assumes no noise on the observations:
U = lim._,g€el

Independent Components Analysis (ICA): Assumes the factors are non-Gaussian
(and no noise).

Mixture of Gaussians: A single discrete-valued “factor”: zp =1 and z; = 0 for all

J 7k

Mixture of Factor Analysers: Assumes the data has several clusters, each of which is
modeled by a single factor analyser.

Linear Dynamical Systems: Time series model in which the factor at time ¢ depends
linearly on the factor at time ¢ — 1, with Gaussian noise.



Extensions of ICA

Fewer or more sources than “microphones” (K # D) — e.g. Lewicki and Sejnowski

(1998).

Allows noise on microphones

Time series versions with convolution by linear filter
Time-varying mixing matrix

Discovering number of sources



Boltzmann Machines

Undirected graphical model (i.e. a Markov network) over a
vector of binary variables s; € {0,1}. Some variables may
be hidden, some may be visible (observed).

\/ P(s|W,b) = —exp ZWZJSSJ stz

where Z is the normalization constant (partition function).

Learning algorithm: a gradient version of EM

e E step involves computing averages w.r.t. P(sg|sy, W,b) (“clamped phase”). This
could be done via a propagation algorithm or (more usually) an approximate method
such as Gibbs sampling.

e The M step requires gradients w.r.t. Z, which can be computed by averages w.r.t.
P(s|W.,b) (“unclamped phase”).

AWy = nl(sisj)e — (8iS5)ul



Sigmoid Belief Networks

Directed graphical model (i.e. a Bayesian network) over a
vector of binary variables s; € {0,1}.

P(s|W,b) = H P(sil{s;}j<i, W,b)

1

P 7 — 1 1 S 9<2 7b
(3 ’{SJ}]< 4 ) 1+ exp{— Zj<z’ Wz‘ij — bz}

A probabilistic version of sigmoid multilayer perceptrons
(“neural networks™).

Learning algorithm: a gradient version of EM

e E step involves computing averages w.r.t. P(sg|sy, W,b). This could be done via the
Belief Propagation algorithm (if singly connected) or (more usually) an approximate
method such as Gibbs sampling or mean field (see later lectures).

e Unlike Boltzmann machines, there is no partition function, so no need for an unclamped
phase in the M step.



Intractability

For many probabilistic models of interest, exact inference is not computationally feasible.
This occurs for two (main) reasons:

e distributions may have complicated forms (non-linearities in generative model)

e ‘“explaining away’ causes coupling from observations
observing the value of a child induces dependencies amongst its parents (high order

interactions)
() (9
NA Yl 3

Y =X, 42X, + Xg+ X, +3Xs

We can still work with such models by using approximate inference techniques to estimate
the latent variables.




Approximate Inference

Sampling: Approximate posterior distribution over hidden variables by a set of random
samples. We often need Markov chain Monte carlo methods to sample from difficult
distributions.

Linearization: Approximate nonlinearities by Taylor series expansion about a point (e.g.
the approximate mean of the hidden variable distribution). Linear approximations are
particularly useful since Gaussian distributions are closed under linear transformations.

Recognition Models: Approximate the hidden variable posterior distribution using an
explicit bottom-up recognition model /network.

Variational Methods: Approximate the hidden variable posterior p(H) with a tractable
form q(H). This gives a lower bound on the likelihood that can be maximised with
respect to the parameters of q(H ).



Recognition Models

e a model is trained in a supervised way to recover the hidden causes (latent variables)
from the observations

e this may take the form of explicit recognition network (e.g. Helmholtz machine) which

mirrors the generative network (tractability at the cost of restricted approximating
distribution)

e inference is done in a single bottom-up pass (no iteration required)



A Generative Model for Generative
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Appendix: Matlab Code for ICA

% ICA using tanh nonlinearity and batch covariant algorithm
% (c) Zoubin Ghahramani

b

% function [W, Mu, LL]=ica(X,cyc,eta,Winit);

o

%» X - data matrix (each row is a data point), <cyc - cycles of learning (default = 200)
% eta - learning rate (default = 0.2), Winit - initial weight

o

% W - unmixing matrix, Mu - data mean, LL - log likelihoods during learning

function [W, Mu, LL]=ica(X,cyc,eta,Winit);

if nargin<2, cyc=200; end;
if nargin<3, eta=0.2; end;

[N D]=size(X); % size of data

Mu=mean(X); X=X-ones(N,1)x*Mu; % subtract mean

if nargin>3, W=Winit; % initialize matrix

else, W=rand(D,D); end;

LL=zeros(cyc,1); % initialize log likelihoods

for i=1l:cyc,

U=X*W" ;
logP=N*log(abs(det (W)))-sum(sum(log(cosh(U))))-N*Dxlog(pi);
W=W+etax (W-tanh (U’) *UxW/N) ; % covariant algorithm
% W=W+etax (inv(W)-X’*tanh(U)/N)’; % standard algorithm

LL(i)=logP; fprintf(’cycle %g log P= %g\n’,i,logP);
end;



