
Unsupervised Learning

Lecture 6: Hierarchical and Nonlinear Models

Zoubin Ghahramani
zoubin@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc in Intelligent Systems, Dept Computer Science

University College London

Autumn 2003

Why we need nonlinearities

Linear systems have limited modelling capability.

X 3
�

Y3
�

X 1

Y1

X 2
�

Y2
�

X T
�

YT
�

Consider linear-Gaussian state-space models.
Only certain dynamics can be modelled.

Why we need hierarchical models

Many generative processes can be naturally described at different levels of detail.

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

Biology seems to have developed hierarchical representations.

Why we need distributed representations

S 3
�

Y3
�

S 1

Y1

S 2
�

Y2
�

S T
�

YT
�

Consider a hidden Markov model.

To capture N bits of information about the history of the sequence,
a HMM requires K = 2N states!

Factorial Hidden Markov Models
and Dynamic Bayesian Networks

S(1)
�

t
�

S(2)
�

t
�

S(3)
�

t
�

Yt
�

S(1)
�

t+1
�

S(2)
�

t+1
�

S(3)
�

t+1
�

Yt+1
�

S(1)
�

t-1
�

S(2)
�

t-1
�

S(3)
�

t-1
�

Yt-1
�

At

Dt

Ct

Bt

At+1

Dt+1

Ct+1

Bt+1

...

At+2

Dt+2

Ct+2

Bt+2

These are hidden Markov models with many state variables
(i.e. a distributed representation of the state).

Blind Source Separation

Independent Components Analysis

YDY1 Y2
�

X1 KX

Λ

• P (xk) is non-Gaussian.

• Equivalently P (xk) is Gaussian, with a nonlinearity g(·):

yd =
K∑

k=1

Λdk g(xk) + εd

• For K = D, and observation noise assumed to be zero, inference and learning are easy
(standard ICA). Many extensions are possible (e.g. with noise ⇒ IFA).

ICA Nonlinearity

Generative model: x = g(w) y = Λx + v
where w and v are zero-mean Gaussian noises with covariances I and R respectively.
The density of x can be written in terms of g(·),

px(x) =
N (0, 1)|g−1(x)

|g′(g−1(x))|

For example, if px(x) = 1
π cosh(x) we find that setting:

g(w) = ln
(
tan

(π

4

(
1 + erf(w/

√
2)

)))
generates vectors x in which each component is distributed
according to 1/(π cosh(x)). −6 −4 −2 0 2 4 6

−20

−15

−10

−5

0

5

10

15

20

So, ICA can be seen either as a linear generative model with non-Gaussian priors for the
hidden variables, or as a nonlinear generative model with Gaussian priors for the hidden
variables.

Natural Scenes and Sounds

500 0 500
10 -4

10 -2

100

Filter Response

P
ro

ba
bi

lit
y

Response histogram
Gaussian density

Natural Scenes

a. b.

���������
	���
�����������������	 ��!#"%$�&(')�*�,+
+-�.�*/0/����.+1	�23��45��687��:9
	;/�	=<0/,�%9
���>�*�?���@�*��	�A

Natural Scenes

���������
	���
�������������	���������� �!��"�#%$
��&�"���'�	(�
��)�	*'+���,��"��-�,���.�/�,	0"�	*�,�1#(�
�2$
	0�,��&�"3�,	0	-465 �7�,8������,	0":9
����	0�7'<;>=�=�?A@/B

Natural Movies

���������
	���
���������	���	�����	�������������� ��	!� �#"$�&%���'(�
���)'�*+���(,-��	�"�.0/21��(34�5'&�
	�%6� ���7"8��'��9	9:;�
���<	>=�' "8�?"
%6�����@�
��� ��"BA6�
�(3C"<*?'&=�	�*�	��EDF�
G�DIHJ3C�I�)1K�
1�	L�����)�
	�"8�������M�����N'���'�*�O2"8�?"J%6�����@�)�P� ��"BA6�)�Q3C"<*?'&=�	!*P	��
DF�8GR�SDIHT341��?�U1V3R����*?�V=W	X�9���2,�� *P, 	!�<3C�Y�
1Z'[���Q,2��	C�)���9� �����2�)	\']��	!���)���^D_"S���2�)���2�`Aa%b�)��� ,Q'&�
c�'(�)	��)	��5dfe4����	��)�<'&�g��h h�i-H#.

Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annual Review of

Neuroscience, 24.

Applications of ICA and Related Methods

• Separating auditory sources

• Analysis of EEG data

• Analysis of functional MRI data

• Natural scene analysis

• ...

ICA: The magic of unmixing

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

5
Mixture of Heavy Tailed Sources

−3 −2 −1 0 1 2
−3

−2

−1

0

1

2

3
Mixture of Light Tailed Sources

How ICA Relates to Factor Analysis
and Other Models

• Factor Analysis (FA): Assumes the factors are Gaussian.

• Principal Components Analysis (PCA): Assumes no noise on the observations:
Ψ = limε→0 εI

• Independent Components Analysis (ICA): Assumes the factors are non-Gaussian
(and no noise).

• Mixture of Gaussians: A single discrete-valued “factor”: xk = 1 and xj = 0 for all
j 6= k.

• Mixture of Factor Analysers: Assumes the data has several clusters, each of which is
modeled by a single factor analyser.

• Linear Dynamical Systems: Time series model in which the factor at time t depends
linearly on the factor at time t− 1, with Gaussian noise.

Extensions of ICA

• Fewer or more sources than “microphones” (K 6= D) – e.g. Lewicki and Sejnowski
(1998).

• Allows noise on microphones

• Time series versions with convolution by linear filter

• Time-varying mixing matrix

• Discovering number of sources

Boltzmann Machines

Undirected graphical model (i.e. a Markov network) over a
vector of binary variables si ∈ {0, 1}. Some variables may
be hidden, some may be visible (observed).

P (s|W,b) =
1
Z

exp

∑
ij

Wijsisj −
∑

i

bisi


where Z is the normalization constant (partition function).

Learning algorithm: a gradient version of EM

• E step involves computing averages w.r.t. P (sH|sV ,W,b) (“clamped phase”). This
could be done via a propagation algorithm or (more usually) an approximate method
such as Gibbs sampling.

• The M step requires gradients w.r.t. Z, which can be computed by averages w.r.t.
P (s|W,b) (“unclamped phase”).

∆Wij = η[〈sisj〉c − 〈sisj〉u]

Sigmoid Belief Networks

Directed graphical model (i.e. a Bayesian network) over a
vector of binary variables si ∈ {0, 1}.

P (s|W,b) =
∏

i

P (si|{sj}j<i,W,b)

P (si = 1|{sj}j<i,W,b) =
1

1 + exp{−
∑

j<i Wijsj − bi}

A probabilistic version of sigmoid multilayer perceptrons
(“neural networks”).

Learning algorithm: a gradient version of EM

• E step involves computing averages w.r.t. P (sH|sV ,W,b). This could be done via the
Belief Propagation algorithm (if singly connected) or (more usually) an approximate
method such as Gibbs sampling or mean field (see later lectures).

• Unlike Boltzmann machines, there is no partition function, so no need for an unclamped
phase in the M step.

Intractability

For many probabilistic models of interest, exact inference is not computationally feasible.
This occurs for two (main) reasons:

• distributions may have complicated forms (non-linearities in generative model)

• “explaining away” causes coupling from observations
observing the value of a child induces dependencies amongst its parents (high order
interactions)

Y

X3 X4X1
 X5X2

1 2 311

Y = X1 + 2 X2 + X3 + X4 + 3 X5

We can still work with such models by using approximate inference techniques to estimate
the latent variables.

Approximate Inference

• Sampling: Approximate posterior distribution over hidden variables by a set of random
samples. We often need Markov chain Monte carlo methods to sample from difficult
distributions.

• Linearization: Approximate nonlinearities by Taylor series expansion about a point (e.g.
the approximate mean of the hidden variable distribution). Linear approximations are
particularly useful since Gaussian distributions are closed under linear transformations.

• Recognition Models: Approximate the hidden variable posterior distribution using an
explicit bottom-up recognition model/network.

• Variational Methods: Approximate the hidden variable posterior p(H) with a tractable
form q(H). This gives a lower bound on the likelihood that can be maximised with
respect to the parameters of q(H).

Recognition Models

• a model is trained in a supervised way to recover the hidden causes (latent variables)
from the observations

• this may take the form of explicit recognition network (e.g. Helmholtz machine) which
mirrors the generative network (tractability at the cost of restricted approximating
distribution)

• inference is done in a single bottom-up pass (no iteration required)

A Generative Model for Generative Models

Gaussian

Factor Analysis

(PCA)

Mixture of

Factor Analyzers

Mixture of

Gaussians

(VQ)

Cooperative

Vector

Quantization

SBN,

Boltzmann

Machines

Factorial HMM

HMM

Mixture of

HMMs

Switching

State-space

Models

ICA
Linear

Dynamical

Systems (SSMs)

Mixture of

LDSs

Nonlinear

Dynamical

Systems

Nonlinear

Gaussian

Belief Nets

mix

mix

mix

switch

red-dim

red-dim

dyn

dyn

dyn

dyn

dyn

mix

distrib

hier

nonlinhier

nonlin

distrib

mix : mixture

red-dim : reduced

 dimension

dyn : dynamics

distrib : distributed

 representation

hier : hierarchical

nonlin : nonlinear

switch : switching

Suggested Readings and References

1. Attias, H. (1999) Independent Factor Analysis. Neural Computation 11:803-851.

2. Bell, A. and Sejnowski, T. (1995) An information maximization approach to blind source separation and

blind deconvolution. Neural Computation 7:1129–1159.

3. Comon, P. (1994) Independent components analysis, a new concept? Signal Processing. 36:287–314.

4. Ghahramani, Z. and Beal, M.J. (2000) Graphical models and variational methods. In Saad & Opper (eds)

Advanced Mean Field Method—Theory and Practice. MIT Press. Also available from my web page.

5. Ghahramani, Z. and Jordan, M.I. (1997) Factorial Hidden Markov Models. Machine Learning 29:245-273.

http://www.gatsby.ucl.ac.uk/∼zoubin/papers/fhmmML.ps.gz

6. David MacKay’s Notes on ICA.

7. Lewicki, M. S. and Sejnowski, T. J. (1998) Learning overcomplete representations. Neural Computation.

8. Olshausen and Field (1996) Emergence of simple-cell receptive field properties by learning a sparse code

for natural images. Nature 381:607-609.

9. Barak Pearlmutter and Lucas Parra paper.

10. Roweis, S.T. and Ghahramani, Z. (1999) A Unifying Review of Linear Gaussian Models. Neural

Computation 11(2). http://www.gatsby.ucl.ac.uk/∼zoubin/papers/lds.ps.gz or lds.pdf

11. Max Welling’s Notes on ICA: http://www.gatsby.ucl.ac.uk/∼zoubin/course01/WellingICA.ps

Appendix: Matlab Code for ICA

% ICA using tanh nonlinearity and batch covariant algorithm
% (c) Zoubin Ghahramani
%
% function [W, Mu, LL]=ica(X,cyc,eta,Winit);
%
% X - data matrix (each row is a data point), cyc - cycles of learning (default = 200)
% eta - learning rate (default = 0.2), Winit - initial weight
%
% W - unmixing matrix, Mu - data mean, LL - log likelihoods during learning

function [W, Mu, LL]=ica(X,cyc,eta,Winit);

if nargin<2, cyc=200; end;
if nargin<3, eta=0.2; end;
[N D]=size(X); % size of data
Mu=mean(X); X=X-ones(N,1)*Mu; % subtract mean
if nargin>3, W=Winit; % initialize matrix
else, W=rand(D,D); end;
LL=zeros(cyc,1); % initialize log likelihoods

for i=1:cyc,
U=X*W’;
logP=N*log(abs(det(W)))-sum(sum(log(cosh(U))))-N*D*log(pi);
W=W+eta*(W-tanh(U’)*U*W/N); % covariant algorithm
% W=W+eta*(inv(W)-X’*tanh(U)/N)’; % standard algorithm
LL(i)=logP; fprintf(’cycle %g log P= %g\n’,i,logP);

end;

