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Review: The EM algorithm

Given a set of observed (visible) variables V', a set of unobserved (hidden / latent / missing)
variables H, and model parameters 6, optimize the log likelihood:

£(6) = logp(V16) = log [ p(H.VI6)dH,

Using Jensen's inequality, for any distribution of hidden variables q(H) we have:

p(H,V10)
q(H)

p(H,V|0)
q(H)

L(0) = log/q(H) dH > /q(H) log dH = F(q,0),

defining the F(q, #) functional, which is a lower bound on the log likelihood.

In the EM algorithm, we alternately optimize F(q,0) wrt ¢ and @, and we can prove that
this will never decrease L.



The E and M steps of EM

The lower bound on the log likelihood:

H,V10)
q(H)

F(q,0) = /Q(H) logp( dH = /CJ(H) log p(H, V|0)dH + H(q),

where H(q) = —/q(H) log q(H)dH is the entropy of q. We iteratively alternate:

E step: maximize F(q, ) wrt the distribution over hidden variables given the parameters:

¢ (H) := argmax f(q(H),H[k_”).
q(H)

M step: maximize F(q,0) wrt the parameters given the hidden distribution:

!l .= argmax ]—"(q[k](H),G) = argmax /q[’“](H) logp(H,V1|0)dH,
7 7

which is equivalent to optimizing the expected complete-data likelihood p(H, V' |#), since
the entropy of ¢(H) does not depend on 6.



Variational Approximations to the EM algorithm

Often p(H|V,0) is computationally intractable, so an exact E step is out of the question.

Assume some simpler form for ¢(H), e.g. ¢ € Q, the set of fully-factorized distributions
over the hidden variables: ¢(H) =[], ¢(H;)

E step (approximate): maximize F(q,6) wrt the distribution over hidden variables given

the parameters:

¢ (H) := argmax F(q(H),H[k_l]).
q(H)eQ

M step : maximize F(q,6) wrt the parameters given the hidden distribution:

Il .= argmax ]-"(q[k](H),H) = argmax /q[k](H) logp(H,V|0)dH
7 7

This maximizes a lower bound on the log likelihood.
Using the fully-factorized form of ¢ is sometimes called a mean-field approximation.



Example: A binary latent factors model
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Example: Binary latent factors model

Model with K binary latent variables s; € {0, 1},
organised into a vector s = (s1,...,SK)
real-valued observation vector y and parameters
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EM optimizes lower bound on likelihood: F(q,0) = (logp(s, Y‘9>>q(s) — (log C](S>>q(s)
where (), is defined expectation under ¢: (f(s)), = > . f(s)q(s)

Exact E step: ¢(s) = p(s|y, 0) is a distribution over 2* states, intractable for large K



Example: Binary latent factors model (cont)

F(q,0) = (log p(s,¥(0))gs) — (log q(s))q(s)

log  p(s,y|0) +c

1
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we therefore need (s;) and (s;s;) to compute F.

These are the expected sufficient statistics of the hidden variables.



Example: Binary latent factors model (cont)

Variational approximation:

— HQi(Si) = H A1 — Ai)<1—si>

1=1

Under this approximation we know (s;) = A; and (s;5;) = A\ A; + 855 (A; — A?).
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Fixed point equations for the binary latent factors model

Taking derivatives w.r.t. \;:
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Setting to zero we get fixed point equations:
(e 1
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JFi

where f(x) = 1/(1 + exp(—x)) is the logistic (sigmoid) function.

Learning algorithm:

E step: run fixed point equations until convergence of A for each data point.
M step: re-estimate 6 given As.



The binary latent factors model for an i.i.d. data set

Assume a data set D = {y1) ... y™ of N points. Parameters @ = {{p;, 7}, 0%}

Use a factorised distribution: ¢(s) = Hfj:l qn(S(”>) = Hfj:l Hfil qn(sﬁn))

p(D]6) = H (y™|6)
2y

p(y™16)

F(a(s).8) = Y Falan(s").6) < logp(DIO)
Fulaa(s™).0) = <1ogp<s<n>,y<n>|e>> - (log gu(s™))
gn(s(™) an(s)

We need to optimise w.r.t. the distribution over latent variables for each data point, so

E step: optimize ¢, (s(™) (i.e. A"™) for each n.
M step: re-estimate 6 given ¢, (s(™'s.



KL divergence

Note that

E step maximize F(q,0) wrt the distribution over hidden variables, given the parameters:

¢ (H) := argmax ]:(q(H),H[k_”).
q(H)eQ

is equivalent to:

E step minimize KL(q||p(H|V,0)) wrt the distribution over hidden variables, given the
parameters:
q(H)

HIV, 01F-1)

qm(H) = argmin/q(H) log ; dH
p

q(H)eQ

So, in each E step, the algorithm is trying to find the best approximation to p in O.

This is related to ideas in information geometry.



Structured Variational Approximations

q(H) need not be completely factorized.

For example, suppose you can partition H into sets H; and Hs such that computing the
expected sufficient statistics under q(H1) and ¢(H>) is tractable.
Then q(H) = q(H1)q(H>) is tractable.

If you have a graphical model, you may want to factorize q(H) into a product of trees,
which are tractable distributions.




Variational Approximations to Bayesian Learning

logp(V) = log//p(V,H|9)p(9) dH d6

p(V,H,0)
//q(H,H)log J(11.6) dH dO

Vv

Constrain ¢ € Q s.t. q(H,0) = q(H)q(0).
This results in the variational Bayesian EM algorithm.

More about this later (when we study model selection).



How tight is the lower bound?

It is hard to compute a nontrivial general upper bound.

To determine how tight the bound is, one can approximate the true likelihood by a variety
of other methods.

One approach is to use the variational approximation as as a proposal distribution for
importance sampling.

But this will generally not work well. See exercise 33.6 in David MacKay's textbook.
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