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Review: The EM algorithm

Given a set of observed (visible) variables V , a set of unobserved (hidden / latent / missing)
variables H, and model parameters θ, optimize the log likelihood:

L(θ) = log p(V |θ) = log
∫

p(H,V |θ)dH,

Using Jensen’s inequality, for any distribution of hidden variables q(H) we have:

L(θ) = log
∫

q(H)
p(H,V |θ)

q(H)
dH ≥

∫
q(H) log

p(H,V |θ)
q(H)

dH = F(q, θ),

defining the F(q, θ) functional, which is a lower bound on the log likelihood.

In the EM algorithm, we alternately optimize F(q, θ) wrt q and θ, and we can prove that
this will never decrease L.



The E and M steps of EM

The lower bound on the log likelihood:

F(q, θ) =
∫

q(H) log
p(H,V |θ)

q(H)
dH =

∫
q(H) log p(H,V |θ)dH +H(q),

where H(q) = −
∫

q(H) log q(H)dH is the entropy of q. We iteratively alternate:

E step: maximize F(q, θ) wrt the distribution over hidden variables given the parameters:

q[k](H) := argmax
q(H)

F
(
q(H), θ[k−1]

)
.

M step: maximize F(q, θ) wrt the parameters given the hidden distribution:

θ[k] := argmax
θ

F
(
q[k](H), θ

)
= argmax

θ

∫
q[k](H) log p(H,V |θ)dH,

which is equivalent to optimizing the expected complete-data likelihood p(H,V |θ), since
the entropy of q(H) does not depend on θ.



Variational Approximations to the EM algorithm

Often p(H|V, θ) is computationally intractable, so an exact E step is out of the question.

Assume some simpler form for q(H), e.g. q ∈ Q, the set of fully-factorized distributions
over the hidden variables: q(H) =

∏
i q(Hi)

E step (approximate): maximize F(q, θ) wrt the distribution over hidden variables given
the parameters:

q[k](H) := argmax
q(H)∈Q

F
(
q(H), θ[k−1]

)
.

M step : maximize F(q, θ) wrt the parameters given the hidden distribution:

θ[k] := argmax
θ

F
(
q[k](H), θ

)
= argmax

θ

∫
q[k](H) log p(H,V |θ)dH,

This maximizes a lower bound on the log likelihood.
Using the fully-factorized form of q is sometimes called a mean-field approximation.



Example: A binary latent factors model
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Example: Binary latent factors model

s1 s2 sK

y

...

Model with K binary latent variables si ∈ {0, 1},
organised into a vector s = (s1, . . . , sK)
real-valued observation vector y and parameters
θ = {{µi, πi}K

i=1, σ
2}

p(s|π) = p(s1, . . . , sK|π) =
K∏

i=1

p(si|πi) =
K∏

i=1

πsi
i (1− πi)(1−si)

p(y|s1, . . . , sK,µ, σ2) = N

(
K∑

i=1

siµi, σ
2I

)

EM optimizes lower bound on likelihood: F(q, θ) = 〈log p(s,y|θ)〉q(s) − 〈log q(s)〉q(s)
where 〈〉q is defined expectation under q: 〈f(s)〉q ≡

∑
s f(s)q(s)

Exact E step: q(s) = p(s|y,θ) is a distribution over 2K states, intractable for large K



Example: Binary latent factors model (cont)

s1 s2 sK

y

...

F(q, θ) = 〈log p(s,y|θ)〉q(s) − 〈log q(s)〉q(s)

log p(s, y|θ) + c

=
∑K

i=1 si log πi +(1− si) log(1− πi)−D log σ −
1

2σ2
(y −

∑
i

siµi)
>
(y −

∑
i

siµi)

=
∑K

i=1 si log πi +(1− si) log(1− πi)−D log σ

−
1

2σ2

y>y − 2
∑

i

siµi
>y +

∑
i

∑
j

sisjµi
>
µj


we therefore need 〈si〉 and 〈sisj〉 to compute F .

These are the expected sufficient statistics of the hidden variables.



Example: Binary latent factors model (cont)

Variational approximation:

q(s) =
∏

i

qi(si) =
K∏

i=1

λsi
i (1− λi)(1−si)

Under this approximation we know 〈si〉 = λi and 〈sisj〉 = λiλj + δij(λi − λ2
i ).

F(λ,θ) =
∑

i

λi log
πi

λi
+ (1− λi) log

(1− πi)
(1− λi)

−D log σ − 1
2σ2

(y −
∑

i

λiµi)
>(y −

∑
i

λiµi)

− 1
2σ2

∑
i

(λi − λ2
i )µi

>µi −
D

2
log(2π)



Fixed point equations for the binary latent factors model

Taking derivatives w.r.t. λi:

∂F
∂λi

= log
πi

1− πi
− log

λi

1− λi
+

1
σ2

(y −
∑
j 6=i

λjµj)
>µi −

1
2σ2

µi
>µi

Setting to zero we get fixed point equations:

λi = f

log
πi

1− πi
+

1
σ2

(y −
∑
j 6=i

λjµj)
>µi −

1
2σ2

µi
>µi


where f(x) = 1/(1 + exp(−x)) is the logistic (sigmoid) function.

Learning algorithm:

E step: run fixed point equations until convergence of λ for each data point.
M step: re-estimate θ given λs.



The binary latent factors model for an i.i.d. data set

Assume a data set D = {y(1) . . . ,y(N)} of N points. Parameters θ = {{µi, πi}K
i=1, σ

2}
Use a factorised distribution: q(s) =

∏N
n=1 qn(s(n)) =

∏N
n=1

∏K
i=1 qn(s(n)

i )

p(D|θ) =
N∏

n=1

p(y(n)|θ)

p(y(n)|θ) =
∑

s

p(y(n)|s,µ, σ)p(s|π)

F(q(s),θ) =
∑

n

Fn(qn(s(n)),θ) ≤ log p(D|θ)

Fn(qn(s(n)),θ) =
〈
log p(s(n),y(n)|θ)

〉
qn(s(n))

−
〈
log qn(s(n))

〉
qn(s(n))

We need to optimise w.r.t. the distribution over latent variables for each data point, so

E step: optimize qn(s(n)) (i.e. λ(n)) for each n.
M step: re-estimate θ given qn(s(n)’s.



KL divergence

Note that

E step maximize F(q, θ) wrt the distribution over hidden variables, given the parameters:

q[k](H) := argmax
q(H)∈Q

F
(
q(H), θ[k−1]

)
.

is equivalent to:

E step minimize KL(q‖p(H|V, θ)) wrt the distribution over hidden variables, given the
parameters:

q[k](H) := argmin
q(H)∈Q

∫
q(H) log

q(H)
p(H|V, θ[k−1])

dH

So, in each E step, the algorithm is trying to find the best approximation to p in Q.

This is related to ideas in information geometry.



Structured Variational Approximations

q(H) need not be completely factorized.

For example, suppose you can partition H into sets H1 and H2 such that computing the
expected sufficient statistics under q(H1) and q(H2) is tractable.
Then q(H) = q(H1)q(H2) is tractable.

If you have a graphical model, you may want to factorize q(H) into a product of trees,
which are tractable distributions.
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Variational Approximations to Bayesian Learning

log p(V ) = log
∫ ∫

p(V,H|θ)p(θ) dH dθ

≥
∫ ∫

q(H,θ) log
p(V,H, θ)
q(H,θ)

dH dθ

Constrain q ∈ Q s.t. q(H,θ) = q(H)q(θ).

This results in the variational Bayesian EM algorithm.

More about this later (when we study model selection).



How tight is the lower bound?

It is hard to compute a nontrivial general upper bound.

To determine how tight the bound is, one can approximate the true likelihood by a variety
of other methods.

One approach is to use the variational approximation as as a proposal distribution for
importance sampling.

−3 −2 −1 0 1 2 3
0

q(x)

p(x)

But this will generally not work well. See exercise 33.6 in David MacKay’s textbook.
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