Unsupervised Learning

Propagation on Factor Graphs

Zoubin Ghahramani
zoubin@gatsby.ucl.ac.uk
Gatsby Computational Neuroscience Unit, and MSc in Intelligent Systems, Dept Computer Science University College London

Autumn 2003

Factor Graphs

In a factor graph, the joint probability distribution is written as a product of factors. Consider a vector of variables $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$

$$
p(\mathbf{x})=p\left(x_{1}, \ldots, x_{n}\right)=\frac{1}{Z} \prod_{j} f_{j}\left(\mathbf{x}_{S_{j}}\right)
$$

where Z is the normalisation constant, S_{j} denotes the subset of $\{1, \ldots, n\}$ which participate in factor f_{j} and $\mathbf{x}_{S_{j}}=\left\{x_{i}: i \in S_{j}\right\}$.

variables nodes: we draw open circles for each variable x_{i} in the distribution. function nodes: we draw filled dots for each function f_{j} in the distribution.

Propagation in Factor Graphs

Let $\mathrm{n}(x)$ denote the set of function nodes that are neighbors of x. Let $\mathrm{n}(f)$ denote the set of variable nodes that are neighbors of f.

We can compute probabilities in a factor graph by propagating messages from variable nodes to function nodes and viceversa.
message from variable x to local function f :

$$
\mu_{x \rightarrow f}(x)=\prod_{h \in \mathrm{n}(x) \backslash\{f\}} \mu_{h \rightarrow x}(x)
$$

message from local function f to variable x :

$$
\mu_{f \rightarrow x}(x)=\sum_{\mathbf{x} \backslash x}\left(f(\mathbf{x}) \prod_{y \in \mathrm{n}(f) \backslash\{x\}} \mu_{y \rightarrow f}(y)\right)
$$

Propagation in Factor Graphs

$\mathrm{n}(x)$ denotes the set of function nodes that are neighbors of x.
$\mathrm{n}(f)$ denotes the set of variable nodes that are neighbors of f.
message from variable x to local function f :

$$
\mu_{x \rightarrow f}(x)=\prod_{h \in \mathrm{n}(x) \backslash\{f\}} \mu_{h \rightarrow x}(x)
$$

message from local function f to variable x :

$$
\mu_{f \rightarrow x}(x)=\sum_{\mathbf{x} \backslash x}\left(f(\mathbf{x}) \prod_{y \in \mathrm{n}(f) \backslash\{x\}} \mu_{y \rightarrow f}(y)\right)
$$

Once a variable has received all messages from its neighboring function nodes we can compute the probability of that variable by multiplying all the messages and renormalising:

$$
p(x) \propto \prod_{h \in \mathrm{n}(x)} \mu_{h \rightarrow x}(x)
$$

Elimination Rules for Factor Graphs

- eliminating observed variables

If a variable x_{i} is observed, i.e. its value is given, then it is a constant in all functions that include x_{i}.

We can eliminate x_{i} from the graph by removing the corresponding node and modifying all neighboring functions to treat it as a constant.

Elimination Rules for Factor Graphs

- eliminating hidden variables

If a variable x_{i} is hidden and we are not interested in it we can eliminate it from the graph by summing over all its values.

$$
\begin{aligned}
\sum_{x_{i}} p(\mathbf{x}) & =\frac{1}{Z} \sum_{x_{i}} \prod_{j} f_{j}\left(\mathbf{x}_{S_{j}}\right) \\
& =\frac{1}{Z} \prod_{j \notin \mathrm{n}\left(x_{i}\right)} f_{j}\left(\mathbf{x}_{S_{j}}\right)\left(\sum_{x_{i}} \prod_{k \in \mathrm{n}\left(x_{i}\right)} f_{k}\left(\mathbf{x}_{S_{k}}\right)\right) \\
& =\frac{1}{Z} \prod_{j \notin \mathrm{n}\left(x_{i}\right)} f_{j}\left(\mathbf{x}_{S_{j}}\right) \quad f_{\mathrm{new}}\left(\mathbf{x}_{S_{\mathrm{new}}}\right)
\end{aligned}
$$

where $f_{\text {new }}\left(\mathbf{x}_{S_{\text {new }}}\right)=\sum_{x_{i}} \prod_{k \in \mathrm{n}\left(x_{i}\right)} f_{k}\left(\mathbf{x}_{S_{k}}\right)$ and $S_{\text {new }}=\bigcup_{k \in \mathrm{n}\left(x_{i}\right)} S_{k} \backslash\{i\}$.
This causes all its neighboring function nodes to merge into one new function node.

