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Last time

• Monte Carlo, statistical sampling

– How to compute expectations by sampling

• Rejection sampling

– How to sample fiddly distributions

(for simulations, or if a method must use a certain distribution)

• Importance sampling

– How to avoid sampling from fiddly distributions

(like rejection, only works in low dimensions)



Importance sampling setup
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p(h|w,D) =
∫

p(h|w, θ)p(θ|D) dθ

≈
∑

s

p(h|w, θ(s))
w(s)∑′
s w(s′)

w(s) =
P ∗

(
θ(s)|D

)
Q∗

(
θ(s)

) , θ(s) ∼ Q

How to pick Q(θ)?

P (θ|D) ∝ P ∗(θ|D) = P (D|θ)P (θ) — from Bayes’ rule



Importance sampling weights

w =0.00548 w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

w =1.01e-08 w =0.111 w =1.92e-09 w =0.0126 w =1.1e-51



Metropolis–Hastings

• Propose a move from the current setting Q(θ′; θ), e.g. N (θ, σ2)

• Accept with probability min
(
1, P ∗(θ′|D)Q∗(θ;θ′)

Q∗(θ′;θ)P ∗(θ|D)

)
• Otherwise next setting is a copy of the previous parameters

Tending towards sampling from p(θ|D)



In parameter space

Exploring a distribution by a random walk



Transition operators

T (x′←x) = probability of moving from current state x to state x′

(Discrete problems) probabilities can be stored in a matrix:

T =

2/3 1/2 1/2
1/6 0 1/2
1/6 1/2 0

 Tij = T (xi←xj)

T is an operator when applied to a probability vector (distribution)2/3 1/2 1/2
1/6 0 1/2
1/6 1/2 0


1/3

1/3
1/3

 =

5/9
2/9
2/9





Stationary distributions

P =

3/5
1/5
1/5

 TP =

2/3 1/2 1/2
1/6 0 1/2
1/6 1/2 0


3/5

1/5
1/5

 =

3/5
1/5
1/5

 = P

The probability of where you end up after many transitions is P . . .2/3 1/2 1/2
1/6 0 1/2
1/6 1/2 0


100 1/3

1/3
1/3

 =

3/5
1/5
1/5

 (to machine precision)

. . . regardless of how you start



Markov chain Monte Carlo
Find a T such that

P (x′) =
∑

x

T (x′←x)P (x)

P is a stationary distribution of T

Ensure TK(x′←x) > 0 for all P (x′) > 0 so that:

• given sufficient time the starting location is forgotten

• the chain has a unique stationary distribution

Run a Markov chain (started arbitrarily)

x1→x2→x3→ . . . where xt ∼ T (xt←xt−1)
After a “burn-in” period every state is (approximately) drawn from P

Using these samples is Markov chain Monte Carlo (MCMC)

How do we find a T?



Detailed balance

Detailed balance means →x→x′ and →x′→x are equally probable:

T (x′←x)P (x) = T (x←x′)P (x′)

“Like Bayes’ rule”, but don’t write T (x′|x); use T (x′;x) or T (x′←x)

Summing both sides over x:∑
x

T (x′←x)P (x) = P (x′)
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���*1∑
x

T (x←x′)

detailed balance implies a stationary condition

Enforcing detailed balance is easy: it only involves isolated pairs



Metropolis–Hastings

Transition operator

• Propose a move from the current state Q(x′;x), e.g. N (x, σ2)

• Accept with probability min
(
1, P (x′)Q(x;x′)

P (x)Q(x′;x)

)
• Otherwise next state in chain is a copy of current state

Notes

• Can use P ∗ and Q∗; normalizers cancel in acceptance ratio

• Satisfies detailed balance (shown below)

• Q must be chosen to fulfill the other technical requirements

P (x) · T (x
′←x) = P (x) ·Q(x

′
; x) min

 
1,

P (x′)Q(x; x′)
P (x)Q(x′; x)

!
= min

“
P (x)Q(x

′
; x), P (x

′
)Q(x; x

′
)
”

= P (x
′
)·Q(x; x

′
) min

 
1,

P (x)Q(x′; x)

P (x′)Q(x; x′)

!
= P (x

′
)·T (x←x

′
)



Gibbs sampling

A method with no rejections:

– Initialize x to some value

– For each variable in turn successively

resample P (xi|xj 6=i)

Exercise: prove (when) Gibbs sampling is valid. Key points:

The Metropolis–Hastings accept prob. is 1 for ‘proposal’ P (xi|xj 6=i)

If two operators maintain a stationary distribution, applying both will

still maintain the stationary distribution.



Routine Gibbs sampling

Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

• Conditionals with a few discrete settings can be explicitly normalized:

P (xi|xj 6=i) ∝ P (xi,xj 6=i)

=
P (xi,xj 6=i)∑
x′i

P (x′i,xj 6=i) ← this sum is small and easy

• Continuous conditionals often turn out to be standard distributions.

• Otherwise rejection sampling is an option

(although a simpler Metropolis scheme may be preferable)

WinBUGS and OpenBUGS sample graphical models using these tricks



Sampling summary

• Probabilistic modelling requires the computation of many

sums and integrals

• Sampling requires insomnia or fast computers,

but is highly competitive on the most complex problems

• Monte Carlo does not explicitly depend on dimension,

although the global methods work only in low dimensions

• Markov chain Monte Carlo (MCMC) uses simple,

local computations ⇒ “easy” to implement.

Methods:

– Direct, rejection and importance sampling

– MCMC: Metropolis–Hastings, Gibbs sampling, . . .

Zoubin’s next lecture is on alternative, deterministic algorithms


