

# 4F13: Machine Learning

---

<http://learning.eng.cam.ac.uk/zoubin/ml06/>

Department of Engineering, University of Cambridge  
Michaelmas 2006

Lecture 9

## **Sampling and Markov Chain Monte Carlo (MCMC)**

**Iain Murray**

i.murray+ta@gatsby.ucl.ac.uk

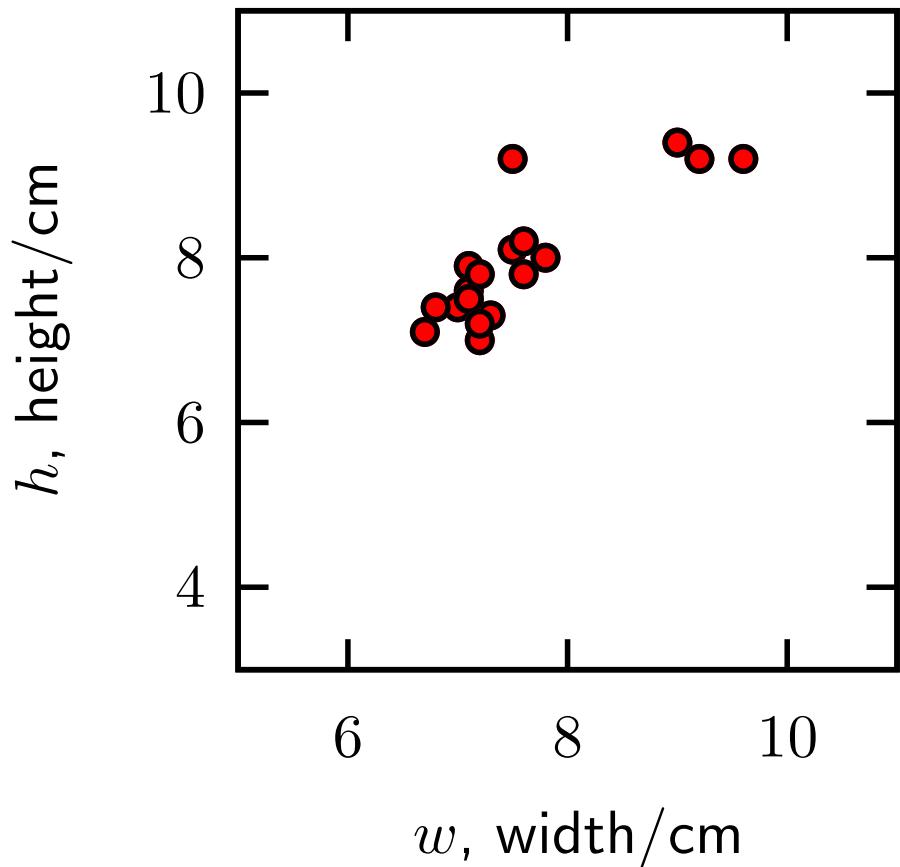
# Last time

---

- **Monte Carlo, statistical sampling**
  - How to compute expectations by sampling
- **Rejection sampling**
  - How to sample fiddly distributions
    - (for simulations, or if a method must use a certain distribution)
- **Importance sampling**
  - How to avoid sampling from fiddly distributions
    - (like rejection, only works in low dimensions)

# Importance sampling setup

---



$$\begin{aligned} p(h|w, \mathcal{D}) &= \int p(h|w, \theta)p(\theta|\mathcal{D}) \, d\theta \\ &\approx \sum_s p(h|w, \theta^{(s)}) \frac{w^{(s)}}{\sum_s' w^{(s')}} \\ w^{(s)} &= \frac{P^*(\theta^{(s)}|\mathcal{D})}{Q^*(\theta^{(s)})}, \quad \theta^{(s)} \sim Q \end{aligned}$$

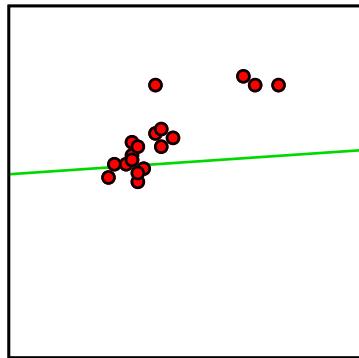
How to pick  $Q(\theta)$ ?

---

$$P(\theta|\mathcal{D}) \propto P^*(\theta|\mathcal{D}) = P(\mathcal{D}|\theta)P(\theta) \text{ — from Bayes' rule}$$

# Importance sampling weights

---



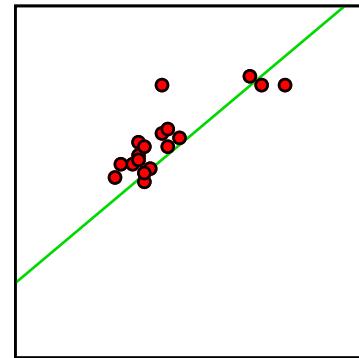
$$w = 0.00548$$



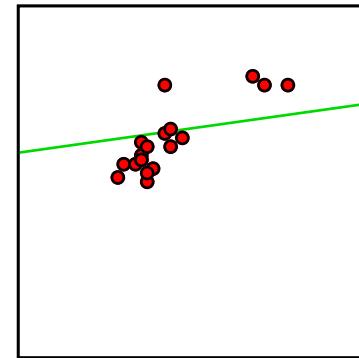
$$w = 1.59 \times 10^{-8}$$



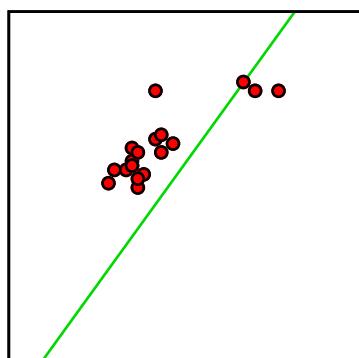
$$w = 9.65 \times 10^{-6}$$



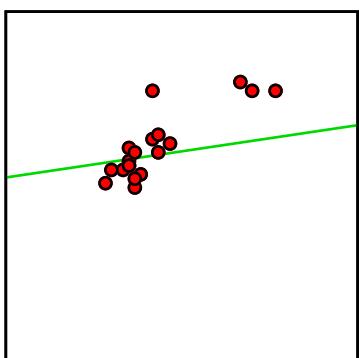
$$w = 0.371$$



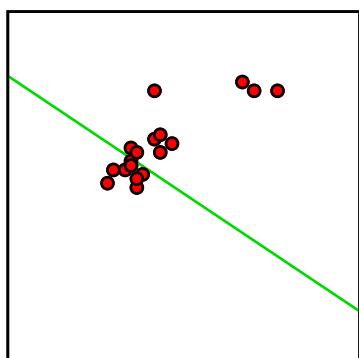
$$w = 0.103$$



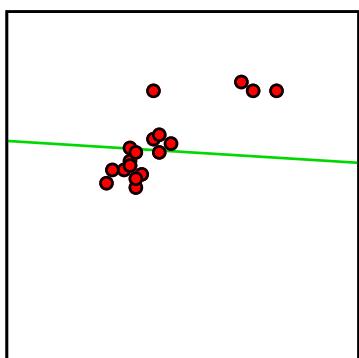
$$w = 1.01 \times 10^{-8}$$



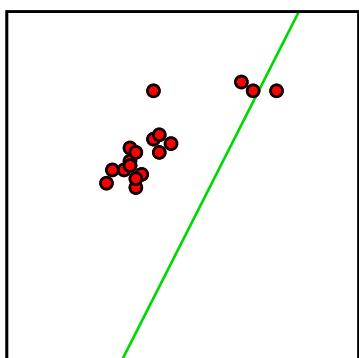
$$w = 0.111$$



$$w = 1.92 \times 10^{-9}$$



$$w = 0.0126$$

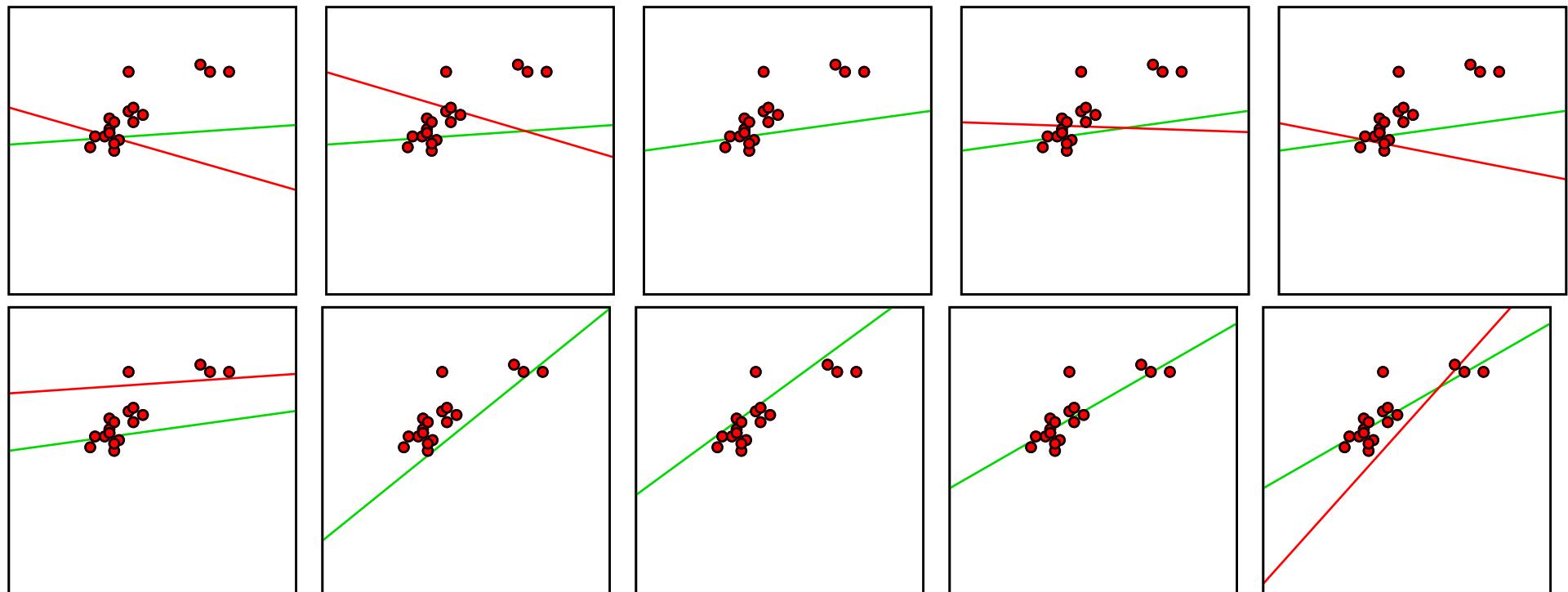


$$w = 1.1 \times 10^{-51}$$

# Metropolis–Hastings

---

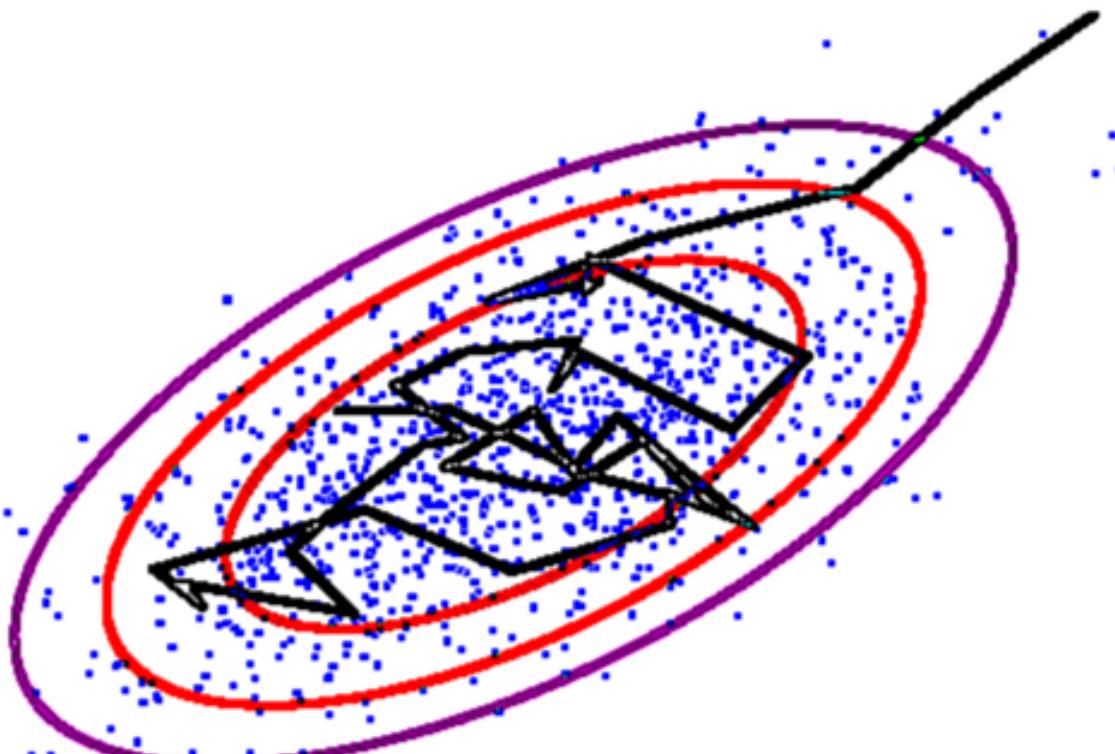
- Propose a move from the current setting  $Q(\theta'; \theta)$ , e.g.  $\mathcal{N}(\theta, \sigma^2)$
- Accept with probability  $\min \left( 1, \frac{P^*(\theta' | \mathcal{D}) Q^*(\theta; \theta')}{Q^*(\theta' | \theta) P^*(\theta | \mathcal{D})} \right)$
- Otherwise next setting is a copy of the previous parameters



Tending towards sampling from  $p(\theta | \mathcal{D})$

# In parameter space

---



Exploring a distribution by a random walk

# Transition operators

---

$T(x' \leftarrow x)$  = **probability of moving from current state  $x$  to state  $x'$**

(Discrete problems) probabilities can be stored in a matrix:

$$T = \begin{pmatrix} 2/3 & 1/2 & 1/2 \\ 1/6 & 0 & 1/2 \\ 1/6 & 1/2 & 0 \end{pmatrix} \quad T_{ij} = T(x_i \leftarrow x_j)$$

$T$  is an *operator* when applied to a probability vector (distribution)

$$\begin{pmatrix} 2/3 & 1/2 & 1/2 \\ 1/6 & 0 & 1/2 \\ 1/6 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix} = \begin{pmatrix} 5/9 \\ 2/9 \\ 2/9 \end{pmatrix}$$

# Stationary distributions

---

$$P = \begin{pmatrix} 3/5 \\ 1/5 \\ 1/5 \end{pmatrix} \quad TP = \begin{pmatrix} 2/3 & 1/2 & 1/2 \\ 1/6 & 0 & 1/2 \\ 1/6 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} 3/5 \\ 1/5 \\ 1/5 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 1/5 \\ 1/5 \end{pmatrix} = P$$

The probability of where you end up after many transitions is  $P\ldots$

$$\begin{pmatrix} 2/3 & 1/2 & 1/2 \\ 1/6 & 0 & 1/2 \\ 1/6 & 1/2 & 0 \end{pmatrix}^{100} \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 1/5 \\ 1/5 \end{pmatrix} \quad (\text{to machine precision})$$

$\ldots$  regardless of how you start

# Markov chain Monte Carlo

---

Find a  $T$  such that

$$P(x') = \sum_x T(x' \leftarrow x) P(x)$$

$P$  is a **stationary distribution** of  $T$

Ensure  $T^K(x' \leftarrow x) > 0$  for all  $P(x') > 0$  so that:

- given sufficient time the starting location is forgotten
- the chain has a unique stationary distribution

Run a **Markov chain** (started arbitrarily)

$$x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow \dots \text{ where } x_t \sim T(x_t \leftarrow x_{t-1})$$

After a “burn-in” period every state is (approximately) drawn from  $P$

Using these samples is **Markov chain Monte Carlo (MCMC)**

How do we find a  $T$ ?

# Detailed balance

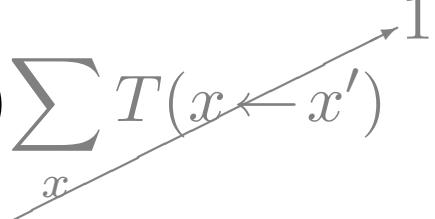
---

Detailed balance means  $\rightarrow x \rightarrow x'$  and  $\rightarrow x' \rightarrow x$  are equally probable:

$$T(x' \leftarrow x)P(x) = T(x \leftarrow x')P(x')$$

“Like Bayes’ rule”, but don’t write  $T(x'|x)$ ; use  $T(x';x)$  or  $T(x' \leftarrow x)$

Summing both sides over  $x$ :

$$\sum_x T(x' \leftarrow x)P(x) = P(x') \sum_x T(x \leftarrow x')$$


**detailed balance implies a stationary condition**

Enforcing detailed balance is easy: it only involves isolated pairs

# Metropolis–Hastings

---

## Transition operator

- Propose a move from the current state  $Q(x'; x)$ , e.g.  $\mathcal{N}(x, \sigma^2)$
- Accept with probability  $\min\left(1, \frac{P(x')Q(x; x')}{P(x)Q(x'; x)}\right)$
- Otherwise next state in chain is a copy of current state

## Notes

- Can use  $P^*$  and  $Q^*$ ; normalizers cancel in acceptance ratio
- Satisfies detailed balance (shown below)
- $Q$  must be chosen to fulfill the other technical requirements

---

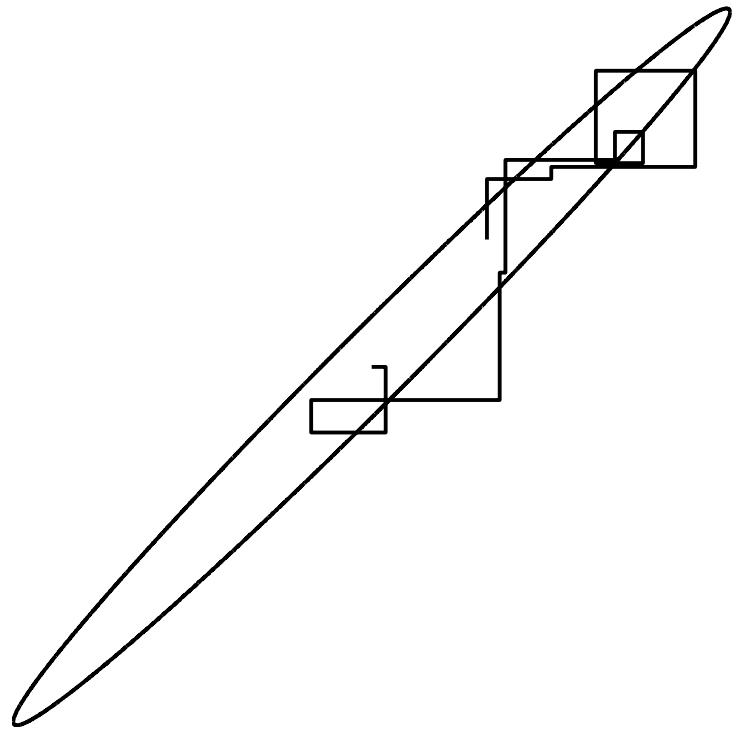
$$\begin{aligned} P(x) \cdot T(x' \leftarrow x) &= P(x) \cdot Q(x'; x) \min\left(1, \frac{P(x')Q(x; x')}{P(x)Q(x'; x)}\right) = \min\left(P(x)Q(x'; x), P(x')Q(x; x')\right) \\ &= P(x') \cdot Q(x; x') \min\left(1, \frac{P(x)Q(x'; x)}{P(x')Q(x; x')}\right) = P(x') \cdot T(x \leftarrow x') \end{aligned}$$

# Gibbs sampling

---

A method with no rejections:

- Initialize  $\mathbf{x}$  to some value
- For each variable in turn successively resample  $P(x_i|\mathbf{x}_{j \neq i})$



**Exercise: prove (when) Gibbs sampling is valid.** Key points:

The Metropolis–Hastings accept prob. is 1 for ‘proposal’  $P(x_i|\mathbf{x}_{j \neq i})$

If two operators maintain a stationary distribution, applying both will still maintain the stationary distribution.

# Routine Gibbs sampling

---

**Gibbs sampling benefits from few free choices and convenient features of conditional distributions:**

- Conditionals with a few discrete settings can be explicitly normalized:

$$P(x_i | \mathbf{x}_{j \neq i}) \propto P(x_i, \mathbf{x}_{j \neq i})$$

$$= \frac{P(x_i, \mathbf{x}_{j \neq i})}{\sum_{x'_i} P(x'_i, \mathbf{x}_{j \neq i})} \leftarrow \text{this sum is small and easy}$$

- Continuous conditionals often turn out to be standard distributions.
- Otherwise rejection sampling is an option  
(although a simpler Metropolis scheme may be preferable)

WinBUGS and OpenBUGS sample graphical models using these tricks

# Sampling summary

---

- Probabilistic modelling requires the computation of many sums and integrals
- Sampling requires insomnia or fast computers, but is highly competitive on the most complex problems
- Monte Carlo does not explicitly depend on dimension, although the global methods work only in low dimensions
- Markov chain Monte Carlo (MCMC) uses simple, local computations  $\Rightarrow$  “easy” to implement.

Methods:

- Direct, rejection and importance sampling
- MCMC: Metropolis–Hastings, Gibbs sampling, . . .

Zoubin’s next lecture is on alternative, deterministic algorithms