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Last time

e Monte Carlo, statistical sampling

— How to compute expectations by sampling

e Rejection sampling
— How to sample fiddly distributions
(for simulations, or if a method must use a certain distribution)
e Importance sampling

— How to avoid sampling from fiddly distributions
(like rejection, only works in low dimensions)



Importance sampling setup
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w, width /cm
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p(hjw, D) = / p(hlw, 0)p(6D) 46

How to pick Q(6)?

P(0|D)  P*(6|D) = P(D|#)P(h) — from Bayes’ rule



Importance sampling weights
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Metropolis—Hastings

e Propose a move from the current setting Q(60’;0), e.g. N (0, 0?)

e Accept with probability min (1

P*(e’lD)Q*w;e’))
» 'Q*(07;0)P*(0]D)

e Otherwise next setting is a copy of the previous parameters
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Tending towards sampling from p(6|D)



In parameter space

Exploring a distribution by a random walk



Transition operators

T (x' < x) = probability of moving from current state z to state z’

(Discrete problems) probabilities can be stored in a matrix:

2/3 1/2 1/2
T=11/6 0 1/2 Ti; = T (2 )
1/6 1/2 0

T is an operator when applied to a probability vector (distribution)

2/3 1/2 1/2\ (1/3 5/9
1/6 0 1/2||1/3|=1]2/9
1/6 1/2 0 ) \1/3 2/9



Stationary distributions

3/5 2/3 1/2 1/2\ [3/5 3/5
P=]1/5 TPp=|1/6 0 1/2|[1/5]|=|1/5|=P
1/5 1/6 1/2 0 1/5 1/5

The probability of where you end up after many transitions is P. . .

23 1/2 12\ [1/3 3/5
1/6 0 1/2 1/3=1|1/5 (to machine precision)
1/6 1/2 0 1/3 1/5

.. . regardless of how you start



Markov chain Monte Carlo

Find a 1" such that
P(z')y =) T(2'—z)P(x)

T
P is a stationary distribution of T’

Ensure T% (2'+x) > 0 for all P(z') > 0 so that:

e given sufficient time the starting location is forgotten

e the chain has a unique stationary distribution

Run a Markov chain (started arbitrarily)
Tr1—To—T3— ... Where x; ~ T(xy— T4 1)

After a "burn-in" period every state is (approximately) drawn from P
Using these samples is Markov chain Monte Carlo (MCMC)

How do we find a 177



Detailed balance

Detailed balance means —x—a’ and — 2’ — x are equally probable:

T(x'+—xz)P(x) = T(x+—2x")P(z")

“Like Bayes' rule”, but don't write T'(2'|x); use T'(x";x) or T'(x' «+—x)

Summing both sides over x:

Z T(x' «—x)P(x) = P(x’)w

detailed balance implies a stationary condition

1

Enforcing detailed balance is easy: it only involves isolated pairs



Metropolis—Hastings

Transition operator
e Propose a move from the current state Q(z'; ), e.g. N'(x,0?)

_ . : Pz Q(z;x")
e Accept with probability min (1, p(a;)Q(:c’;CIJ))

e Otherwise next state in chain is a copy of current state

Notes

e Can use P* and Q*; normalizers cancel in acceptance ratio
e Satisfies detailed balance (shown below)

e () must be chosen to fulfill the other technical requirements

/ !
P(z) - T(z' —2) = P(z) - Q(z'; ) min (1, Z((Z))g((;c/’-x))> - min(P(m)Q(a:/;a:), P(x/)Q(a:;m/))
. P(x)Q a:/;:lz
= P(a:/).Q(a;; :1:/) min (1, P((:c’))Q((m; ac’))) = P(:}:/).T(a:<—:c/)



Gibbs sampling

A method with no rejections:

— Initialize x to some value
— For each variable in turn successively

resample P(x;|x;2;)

Exercise: prove (when) Gibbs sampling is valid. Key points:

The Metropolis—Hastings accept prob. is 1 for ‘proposal’ P(x;|x;;)
If two operators maintain a stationary distribution, applying both will
still maintain the stationary distribution.



Routine Gibbs sampling

Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

e Conditionals with a few discrete settings can be explicitly normalized:

P(xi|xj:) oc P(x;,Xj£;)

_ P(xiaxj#i)
> P(x},%x;2;) < this sum is small and easy

e Continuous conditionals often turn out to be standard distributions.

e Otherwise rejection sampling is an option
(although a simpler Metropolis scheme may be preferable)

WinBUGS and OpenBUGS sample graphical models using these tricks



Sampling summary

e Probabilistic modelling requires the computation of many
sums and integrals

e Sampling requires insomnia or fast computers,
but is highly competitive on the most complex problems

e Monte Carlo does not explicitly depend on dimension,
although the global methods work only in low dimensions

e Markov chain Monte Carlo (MCMC) uses simple,
local computations = “easy’ to implement.

Methods:
— Direct, rejection and importance sampling

— MCMC: Metropolis—Hastings, Gibbs sampling, . ..

Zoubin's next lecture is on alternative, deterministic algorithms



