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What will we cover in part C ? 
 Image searching and modelling using  

machine learning  methods "

"We will focus on the application of pattern recognition and statistical 
machine learning methods to image retrieval and related problems. 
Although all examples will use  images, the ideas are generally applicable 
to other domains, for example, web document retrieval, music, and 
financial data. !

Topics:"
–  Representing images as feature vectors"
–  Probabilistic models, use of Bayes rule, Bernoulli 

distributions and multivariate Gaussians"
–  Image retrieval"
–  Outlier removal and novelty detection"
–  A case study of an image retrieval method"



Images



Representing Images as Feature Vectors
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There are many possible feature vector representions, e.g.:

• x = [r g b] overall red/green/blue values

• x = [p1, . . . pN ] vector of greyscale pixel values

• x = [w1, . . . , wM ] visual words



Different Types of Features

Let x = (x1, x2, . . . , xD) denote D features of an image (or any other data object!).
Let D = {x1,x2 . . . ,xN} be a data set of images

There are many possible types of features, e.g.:

• xi ∈ {0, 1} - binary features

• xi ∈ R - real-valued features

• xi ∈ R+ - non-negative features

• xi ∈ {0, 1, 2, . . .} - ordinal integer counts

• xi ∈ {cloud, sky, tree, . . .} - nominal, categorical

Q: What can we do with feature vectors?
Q: How can we model them?

(We’ll focus on binary and real-valued features)



What can we do with feature vectors?
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• classification

• outlier removal

• modelling/prediction/completion

• retrieval



Binary Features

xi ∈ {0, 1}

• A deterministic model does not represent uncertainty (e.g. leaves are green).

• A probabilistic model tries to capture the variability in the features (e.g. leaves are
generally green)

For binary data:
P (xi = 1) = θ

where θ is the probability that feature i is 1, and

P (xi = 0) = 1− θ

since xi has to be either 0 or 1 for binary features.

The above two statements imply:

P (xi) = θxi(1− θ)1−xi

which is the Bernoulli distribution.



Multivariate Bernoulli

Univariate:
P (xi) = θxi(1− θ)1−xi

Multivariate:

P (x) =

D∏
i=1

θxii (1− θi)1−xi

Q: What does θi represent?

Q: What is a limitation of this model?

To make the dependence of this model on its parameters explicit, we can write: P (x|θ).



Comparing Data Points

Given a model parametrized by θ, and two data points x and x′, we can find out which is
more probable under the model.

r =
P (x|θ)

P (x′|θ)
> 1

means that x is more probable than x′, given θ. Equivalently,

log r = logP (x|θ)− logP (x′|θ) > 0

For example, for multivariate Bernoulli model:

log r =

D∑
i=1

(xi − x′i) log θi + (x′i − xi) log(1− θi)

=

D∑
i=1

(xi − x′i) log
θi

1− θi



Comparing Models

Given a data point or set of data points we can find out which of two parameters θ or θ′

has higher likelihood

r =
P (x|θ)

P (x|θ′)



Univariate Gaussians

xi ∈ R

Univariate Gaussian density (x ∈ R):

p(x|µ, σ) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
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Univariate Gaussian density

This model has parameters θ = {µ, σ} which model the mean and standard deviation of
the data, respectively.



The multivariate Gaussian

Multivariate Gaussian density (x ∈ RD):

p(x|µ,Σ) = |2πΣ|−1
2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}

µ =

[
0
0

]
Σ =

[
1 0
0 1

]
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This model has parameters θ = {µ,Σ} which model the mean and covariance matrix of
the data.



The multivariate Gaussian density

µ =

[
0
0

]
Σ =

[
1 0.9

0.9 1

]
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µ =

[
−1
1

]
Σ =

[
1 0.9

0.9 1

]
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Fitting a model to data
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Assume the data were generated independently from the model.
We can measure the likelihood of the model:

p(D|θ) =

N∏
n=1

p(xn|θ)

Clearly, the third model is a better fit to the data than the others:

log p(D|θ1) = −55.38

log p(D|θ2) = −238.29

log p(D|θ3) = −22.14



The likelihood function

Data set D = {x1, . . . ,xN}, the likelihood: p(D|µ,Σ) =

N∏
n=1

p(xn|µ,Σ) is a function of

the model parameters

The maximum likelihood (ML) procedure finds parameters θML = {µ,Σ} such that:

θML = argmaxθ p(D|θ)
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Two very simple data sets

What are the maximum likelihood estimates of θ for these data sets?
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Does this make sense?



Bayesian Learning

Apply the basic rules of probability to learning from data.
Use probability distributions to represent uncertainty.

Data set: D = {x1, . . . ,xN}
Model parameters: θ

Prior probabilities of model parameters: P (θ)
Model of data given parameters (likelihood model): P (x|θ)

If the data are independently and identically distributed
then:

P (D|θ) =

N∏
n=1

P (xn|θ)

Posterior probability of model parameters:

P (θ|D) =
P (D|θ)P (θ)

P (D)
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Basic Rules of Probability

Let X be a random variable taking values x in some set X .

Probabilities are non-negative P (X = x) ≥ 0 ∀x.

Probabilities normalise:
∑
x∈X P (X = x) = 1 for distributions if x is a discrete variable

and
∫ +∞
−∞ p(x)dx = 1 for probability densities over continuous variables

The joint probability of X = x and Y = y is: P (X = x, Y = y).

The marginal probability of X = x is: P (X = x) =
∑
y P (X = x, y), assuming y is

discrete. I will generally write P (x) to mean P (X = x).

The conditional probability of x given y is: P (x|y) = P (x, y)/P (y)

Bayes Rule:

P (x, y) = P (x)P (y|x) = P (y)P (x|y) ⇒ P (y|x) =
P (x|y)P (y)

P (x)



Basic Rules of Probability and Bayesian Learning

Everything follows from two simple rules:

Sum rule: P (x) =
∑
y P (x, y)

Product rule: P (x, y) = P (x)P (y|x)

Learning:

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)

P (D|θ,m) likelihood of parameters θ in model m

P (θ|m) prior probability of θ

P (θ|D,m) posterior of θ given data D

Prediction:

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ

Model Comparison:

P (m|D) =
P (D|m)P (m)

P (D)

P (D|m) =

∫
P (D|θ,m)P (θ|m) dθ


