Image Searching and Modelling using Machine Learning Methods Part IB Paper 8 Information Engineering Elective

Lecture 1: Feature vectors and models

Zoubin Ghahramani

zoubin@eng.cam.ac.uk

Department of Engineering University of Cambridge

Easter Term

What will we cover in part C? Image searching and modelling using machine learning methods

We will focus on the application of pattern recognition and statistical machine learning methods to **image retrieval** and related problems. Although all examples will use images, the ideas are generally applicable to other domains, for example, web document retrieval, music, and financial data.

Topics:

- Representing images as feature vectors
- Probabilistic models, use of Bayes rule, Bernoulli distributions and multivariate Gaussians
- Image retrieval
- Outlier removal and novelty detection
- A case study of an image retrieval method

Images

Representing Images as Feature Vectors

There are many possible feature vector representions, e.g.:

- $\mathbf{x} = [r \ g \ b]$ overall red/green/blue values
- $\mathbf{x} = [p_1, \dots p_N]$ vector of greyscale pixel values
- $\mathbf{x} = [w_1, \dots, w_M]$ visual words

Different Types of Features

Let $\mathbf{x} = (x_1, x_2, \dots, x_D)$ denote D features of an image (or any other data object!). Let $\mathcal{D} = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N}$ be a data set of images

There are many possible types of features, e.g.:

- $x_i \in \{0,1\}$ binary features
- $x_i \in \mathbb{R}$ real-valued features
- $x_i \in \mathbb{R}_+$ non-negative features
- $x_i \in \{0, 1, 2, \ldots\}$ ordinal integer counts
- $x_i \in \{\text{cloud}, \text{sky}, \text{tree}, \ldots\}$ nominal, categorical

Q: What can we do with feature vectors?Q: How can we model them?

(We'll focus on binary and real-valued features)

What can we do with feature vectors?

- classification
- outlier removal
- modelling/prediction/completion
- retrieval

Binary Features

 $x_i \in \{0, 1\}$

- A deterministic model does not represent uncertainty (e.g. leaves are green).
- A probabilistic model tries to capture the variability in the features (e.g. leaves are generally green)

For binary data:

$$P(x_i = 1) = \theta$$

where θ is the probability that feature *i* is 1, and

$$P(x_i = 0) = 1 - \theta$$

since x_i has to be either 0 or 1 for binary features.

The above two statements imply:

$$P(x_i) = \theta^{x_i} (1 - \theta)^{1 - x_i}$$

which is the Bernoulli distribution.

Multivariate Bernoulli

Univariate:

$$P(x_i) = \theta^{x_i} (1 - \theta)^{1 - x_i}$$

Multivariate:

$$P(\mathbf{x}) = \prod_{i=1}^{D} \theta_i^{x_i} (1 - \theta_i)^{1 - x_i}$$

Q: What does θ_i represent?

Q: What is a limitation of this model?

To make the dependence of this model on its parameters explicit, we can write: $P(\mathbf{x}|\boldsymbol{\theta})$.

Comparing Data Points

Given a model parametrized by θ , and two data points x and x', we can find out which is more probable under the model.

$$r = rac{P(\mathbf{x}|\boldsymbol{ heta})}{P(\mathbf{x}'|\boldsymbol{ heta})} > 1$$

means that x is more probable than x', given θ . Equivalently,

$$\log r = \log P(\mathbf{x}|\boldsymbol{\theta}) - \log P(\mathbf{x}'|\boldsymbol{\theta}) > 0$$

For example, for multivariate Bernoulli model:

$$\log r = \sum_{i=1}^{D} (x_i - x'_i) \log \theta_i + (x'_i - x_i) \log(1 - \theta_i)$$
$$= \sum_{i=1}^{D} (x_i - x'_i) \log \frac{\theta_i}{1 - \theta_i}$$

Comparing Models

Given a data point or set of data points we can find out which of two parameters θ or θ' has higher likelihood

$$r = \frac{P(\mathbf{x}|\boldsymbol{\theta})}{P(\mathbf{x}|\boldsymbol{\theta}')}$$

Univariate Gaussians

This model has parameters $\theta = \{\mu, \sigma\}$ which model the mean and standard deviation of the data, respectively.

The multivariate Gaussian

Multivariate Gaussian density $(\mathbf{x} \in \mathbb{R}^D)$:

$$p(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = |2\pi\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

This model has parameters $\theta = \{\mu, \Sigma\}$ which model the mean and covariance matrix of the data.

The multivariate Gaussian density

Fitting a model to data

Assume the data were generated independently from the model. We can measure the likelihood of the model:

$$p(\mathcal{D}|\boldsymbol{\theta}) = \prod_{n=1}^{N} p(\mathbf{x}_n|\boldsymbol{\theta})$$

Clearly, the third model is a better fit to the data than the others:

$$\log p(\mathcal{D}|\boldsymbol{\theta}_1) = -55.38$$

$$\log p(\mathcal{D}|\boldsymbol{\theta}_2) = -238.29$$

$$\log p(\mathcal{D}|\boldsymbol{\theta}_3) = -22.14$$

The likelihood function

Data set $\mathcal{D} = {\mathbf{x}_1, \dots, \mathbf{x}_N}$, the likelihood: $p(\mathcal{D}|\boldsymbol{\mu}, \Sigma) = \prod_{n=1}^N p(\mathbf{x}_n | \boldsymbol{\mu}, \Sigma)$ is a function of the model parameters

The maximum likelihood (ML) procedure finds parameters $\theta_{ML} = {\mu, \Sigma}$ such that:

 $\boldsymbol{\theta}_{\mathrm{ML}} = \operatorname{argmax}_{\boldsymbol{\theta}} p(\mathcal{D}|\boldsymbol{\theta})$

Two *very* simple data sets

What are the maximum likelihood estimates of θ for these data sets?

Does this make sense?

Bayesian Learning

Apply the basic rules of probability to learning from data. Use probability distributions to represent uncertainty.

```
Data set: \mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}
Model parameters: \boldsymbol{\theta}
```

```
Prior probabilities of model parameters: P(\theta)
Model of data given parameters (likelihood model): P(\mathbf{x}|\theta)
```

If the data are independently and identically distributed then: N

$$P(\mathcal{D}|\boldsymbol{\theta}) = \prod_{n=1}^{n} P(\mathbf{x}_n|\boldsymbol{\theta})$$

Posterior probability of model parameters:

$$P(\boldsymbol{\theta}|\mathcal{D}) = \frac{P(\mathcal{D}|\boldsymbol{\theta})P(\boldsymbol{\theta})}{P(\mathcal{D})}$$

Basic Rules of Probability

Let X be a random variable taking values x in some set \mathcal{X} .

Probabilities are non-negative $P(X = x) \ge 0 \ \forall x$.

Probabilities normalise: $\sum_{x \in \mathcal{X}} P(X = x) = 1$ for distributions if x is a discrete variable and $\int_{-\infty}^{+\infty} p(x) dx = 1$ for probability densities over continuous variables

The joint probability of X = x and Y = y is: P(X = x, Y = y).

The marginal probability of X = x is: $P(X = x) = \sum_{y} P(X = x, y)$, assuming y is discrete. I will generally write P(x) to mean P(X = x).

The conditional probability of x given y is: P(x|y) = P(x,y)/P(y)

Bayes Rule:

$$P(x,y) = P(x)P(y|x) = P(y)P(x|y) \implies$$

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

Basic Rules of Probability and Bayesian Learning

Everything follows from two simple rules:
Sum rule:
$$P(x) = \sum_{y} P(x, y)$$

Product rule: $P(x, y) = P(x)P(y|x)$

Learning:

$$P(\theta|\mathcal{D},m) = \frac{P(\mathcal{D}|\theta,m)P(\theta|m)}{P(\mathcal{D}|m)} \qquad \begin{array}{l} P(\mathcal{D}|\theta,m) & \text{likelihood of parameters } \theta \text{ in model } m \\ P(\theta|m) & \text{prior probability of } \theta \\ P(\theta|\mathcal{D},m) & \text{posterior of } \theta \text{ given data } \mathcal{D} \end{array}$$

Prediction:

$$P(x|\mathcal{D},m) = \int P(x|\theta,\mathcal{D},m)P(\theta|\mathcal{D},m)d\theta$$

Model Comparison:

$$P(m|\mathcal{D}) = \frac{P(\mathcal{D}|m)P(m)}{P(\mathcal{D})}$$
$$P(\mathcal{D}|m) = \int P(\mathcal{D}|\theta, m)P(\theta|m) d\theta$$