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Abstract—In his thesis, MacKay (1991) introduced figure
1, explaining how Bayes rule provides an automatic “Oc-
cam’s razor” effect, penalizing unnecessarily complex mod-
els. This figure has been adopted by several authors in the
same schematic form. Here, after briefly reviewing neces-
sary material, we compute a realization of the plot for a
toy data modeling problem. We discuss interesting aspects
of this plot and their implications for understanding model
complexity.

I. I NTRODUCTION

One framework for statistical data modeling starts with
writing down parametric forms for possible models,Hi,
and prior distributions over the parameters of those mod-
els,P (w|Hi). Given these, Bayes’ rule provides posterior
beliefs about the models’ parameters after observing data,
D:

P (w|D,Hi) =
P (D|w,Hi)P (w|Hi)

P (D|Hi)
. (1)

Bayes’ rule also provides a posterior distribution over
models:

P (Hi|D) ∝ P (D|Hi)P (Hi), (2)

where theevidenceor marginal likelihood, P (D|Hi) =∫
P (D|w,Hi)P (w|Hi)dw is the normalizing constant

from (1).
Figure 1 illustrates the meaning of the evidence,

P (D|Hi). Each model distributes unit probability mass
over all possible data sets. When theHi do not explic-
itly model the amount of data generated, we only consider
data sets of a particular size. TheD-axis has been chosen
so that generally more probable, or “simple”, data sets are
near the center of the plot.

Simple models choose to concentrate their probability
mass around a limited number of data sets. Complex mod-
els predict that data will be drawn from a large range of
possibilities. If observed data can be explained well by a
simple model then more complicated models, which have
spent more of their available probability mass elsewhere,
will be automatically penalized.

Fig. 1. This figure is reproduced with permission from MacKay
(1991). It has also appeared in MacKay (1992) and MacKay (2003,
chapter 28). TheD-axis indexes all possible data sets (under some
idealized ordering). Each curve gives a probability distribution over
data sets, so must enclose an area of 1.H1 is a simple model focusing
on data in regionC1. Given data is this region,H1 has more evidence
than a more powerful modelH2, which would be favored given more
complex data (outsideC1).

II. A N EXPLICIT EXAMPLE

Here we consider four models for a simple data model-
ing problem. An observation consists of a labeling of nine
binary observationsD ≡ {y(n) =±1}9n=1, corresponding
to a grid of known input locations:

x(1) =(−1,+1), x(2) =(0,+1), x(3) =(+1,+1)
x(4) =(−1, 0), x(5) =(0, 0), x(6) =(+1, 0)
x(7) =(−1,−1), x(8) =(0,−1), x(9) =(+1,−1) .

(3)

There are29 = 512 possible labelings (ie data setsD) of
these nine locations. We define the following models:

P (D|w,H0) =
1

512

P (D|w,H1) =
9∏

n=1

1

1 + e−y(n)w1x
(n)
1

(4)

P (D|w,H2) =
9∏

n=1

1

1 + e−y(n)
(
w1x

(n)
1 +w2x

(n)
2

)
P (D|w,H3) =

9∏
n=1

1

1 + e−y(n)
(
w0+w1x

(n)
1 +w2x

(n)
2

) .
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Fig. 2. (i) Plot of evidence for all possible data sets for the models in section II. (ii) Detail of the previous plot. Each label (a)–(h) sits on the
line of the model best predicting the corresponding data set (shown in figure 3). These data sets are discussed in section III. (iii) detail of an
evidence plot using an alternative set of models, see section IV.
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Fig. 3. Labelings for the grid of inputs in equation (3) corresponding to data sets (a)–(h) labeled in figure 2(ii). Due to symmetry, the assignment
of × and◦ to±1 is arbitrary.

H0 treats all data sets equally;H3 is standard logistic
regression;H2 is the same asH3 but without the bias
weight w0; H1 is the same asH2 except it ignores the
second dimension ofx. Notice we have chosen the sub-
scripts to reflect the number of parameters in each model.
The prior over parameters was chosen to bep(wj |Hi) =
N (0, 102) ∀i, j. For this toy problem, these choices are
somewhat arbitrary; we chose models that would be inter-
esting to compare.

Figure 2(i) shows the evidenceP (D|Hi) for each
model over all possible 512 data sets. The ordering of
data sets was chosen heuristically (see appendix). Ev-
idences were approximated by simple Monte Carlo; we
drewS = 108 samples from the prior and computed:

P (D|Hi) ≈
S∑

s=1

P (D|w(s),Hi), w(s)∼P (w|Hi). (5)

The same samples were used for every computation. (An-
other interpretation is that our prior was uniform over the

discrete set of108 parameter vectors we considered.)

III. D ISCUSSION

Figure 2(ii) shows a detail of the whole evidence plot
2(i). The model with the largest evidence has been iden-
tified for each of eight data sets, (a)–(h), which are illus-
trated in figure 3. We briefly check that the most likely
model for each data set make sense; then we discuss some
more general properties of the models.

Data set (a) has a very unequal distribution of+1 and
−1. Full logistic regressionH3 is the only model to have
a bias termw0 to account for this, so it makes sense that
H3 gives higher probability to (a) than the other models.

In data set (b) the decision boundary is a function of
x1 but notx2. ModelH1 is a simple model that captures
such decision boundaries, so it makes sense that it gives
(b) high probability. Data set (c) is equivalent to (b) under
H1 as the different point hasx1 =0, but nowH2 becomes
a close competitor. Data set (d) is equivalent to (c) under
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H2 due to rotation invariance, whereasH1 cannot model
decision boundaries with this orientation.

Data sets (e) and (f) are favored byH3 with the bias
term, asw0 allows decision boundaries to be offset from
the origin. The point at the origin in data set (g) is always
ignored by models without a bias weight, so hereH2 is fa-
vored overH3. Finally data set (h) is not well modeled by
any sharp linear boundary, in this case the uniform model
H0 is most likely.

The above discussion assumed fairly sharp decision
boundaries are typical; this results from the priorwi ∼
N (0, 102). In modelsH1, H2 andH3, large settings of
the weights,w, correspond to a sharp linear boundary in
x space, one side of which hasy = +1 with high prob-
ability, the other side preferringy = −1. The prior on
the parameters has width 10, which is very vague in pa-
rameter space. However, in terms of data sets the prior
is not vague: it puts most of its mass on settings of the
parameters that give sharp linear boundaries. If the priors
on parameters had had smaller widths, then the models
would have become more likeH0.

The full logistic regression model,H3, could be consid-
ered the most complex model of the four: it has the most
parameters and can realize the other models by setting
some of its parameters to zero. This means that we ex-
pect it to spread the bulk of its unit probability mass over
a wider range of data sets than the other models. Figures
2(i) and 2(ii) show this intuition is correct. This flexibility
comes at the expense of sometimes losing out to simpler
models. Data set (b) was a good example: by moving the
decision boundary from the origin some carefully chosen
parameter settings ofH3 give (b) higher probability than
any settings inH2. However,H2 is more likely given (b),
because the data are more typical ofH2 thanH3.

The simplest model in terms of parameter counting is
H0, as it has no free parameters. The model simply de-
fines a single distribution over data sets, assigning them
all probability 1/152. Figure 2(i) shows that this model
has the largest evidence over a large range of data sets. As
a result, it is unable to assign as much probability mass to
“simple” data sets (a)–(g) as the other models. In some
senseH0 is a complex model, it assigns many different
types of behaviors similar probability. How can a model
with no free parameters be described as complex?

We could have made other models with zero param-
eters. One such model assigns probability1/8 to each
of data sets (a)–(h) and zero to all other outcomes. This
model would have higher evidence than any model we
have considered given any data set from figure 3. Other
models with “zero parameters” assign exactly the same
probability distributions as the marginal distributions,

P (D|Hi), of modelsH1, H2 andH3. In other words,
parameter counting has no real meaning.

It could be argued thatH0 has special status as the only
model to give no preference amongst possible data sets.
However we might have chosen to record only how many
times we observey = +1. Putting a uniform prior over
this quantity yields a different supposedly “assumption-
free” model fromH0. In other problems, where outcomes
are continuous values from some range, the meaning of a
“uniform prior over outcomes” depends not only on which
quantities are measured, but also their parameterization.

IV. A LTERNATIVE MODELS

Figures 2(i), 2(ii) were qualitatively different from fig-
ure 1. In the schematic figure there was a single ordering
from simple data sets out to complex: the most probable
data sets according toH1 were also the most probable ac-
cording toH2. The models just disagreed by how much.
In our experiments the two most probable data sets ac-
cording toH3 were amongst the very least probable data
sets underH1 andH2.

The behavior we observed was due toH3 being the only
model with a bias weight. The models were nested, in that
Hi could set some parameters to zero to becomeHj for
i > j, but some basic flexibility was introduced last. An
alternative hierarchy of models includes the bias weight
first:

P (D|w,M0) =
1

512

P (D|w,M1) =
9∏

n=1

1
1 + e−y(n)w0

(6)

P (D|w,M2) =
9∏

n=1

1

1 + e−y(n)
(
w0+w1x

(n)
1

)
P (D|w,M3) =

9∏
n=1

1

1 + e−y(n)
(
w0+w1x

(n)
1 +w2x

(n)
2

) .

Results using these models are shown in figure 2(iii). This
is more similar to figure 1 in that the top few most proba-
ble data sets are the same according to modelsM1, M2

andM3. Although there is still not one common ordering
from simple data to complex data.

V. CONCLUSIONS

Some important points illustrated in this paper are:
• There is not necessarily a relationship between num-

ber of parameters and complexity.
• A hierarchy of models does not necessarily have any

universal ordering from simple to complex.
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• Vague priors on parameters may not be vague in
terms of the predictive distributions we care about.

• Bayesian statistics makes coherent inferences from
our data based on explicit modeling assumptions.
There is no need for additional complexity control.

We hope working through an explicit example will help
a wider audience understand the automatic Occam’s razor
effect in Bayesian model comparison.
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APPENDIX

For completeness we define how the data sets were
ordered in figure 2. We used a greedy heuristic that
populated the plots from right to left by choosing data
sets without replacement from the 512 possibilities. For
this algorithm distance was defined as

∑
i(P (D|Hi) −

P (D′|Hi)).

Algorithm to order data sets, D ∈ D for figure 2
Choose data setL = argminD∈D

∑
i P (D|Hi)

RemoveL fromD
while (D is not empty)

N = set of points inD with L as nearest neighbor
if (N is empty)

ChooseL = nearest neighbor inD to L
else

ChooseL = furthest point fromL in N
RemoveL fromD

This heuristic procedure was just one of many possible
ways of creating legible plots. We should comment that
many more obvious schemes, such as sorting by the evi-
dence of one of the models, give wildly oscillating plots.
This reflects the property noted in the discussion: there
is not one universal ordering of the data sets or models
from simple to complex. It is therefore very fortunate the
Bayesian procedure does not require us to specify such an
ordering.


