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Abstract

We consider the problem of clustering in its
most basic form where only a local metric
on the data space is given. No parametric
statistical model is assumed, and the num-
ber of clusters is learned from the data. We
introduce, analyze and demonstrate a novel
approach to clustering where data points are
viewed as nodes of a graph, and pairwise sim-
ilarities are used to derive a transition prob-
ability matrix P for a Markov random walk
between them. The algorithm automatically
reveals structure at increasing scales by vary-
ing the number of steps taken by this random
walk. Points are represented as rows of P t,
which are the t-step distributions of the walk
starting at that point; these distributions are
then clustered using a KL-minimizing itera-
tive algorithm. Both the number of clusters,
and the number of steps that ‘best reveal’ it,
are found by optimizing spectral properties
of P .

1. Introduction

Clustering is an unsupervised learning problem, where
one needs to find group structure in a given set of items
S = {sn}N

n=1. The general approach is to assume that
the data set can be organized in K groups, or explained
by K factors, and clustering algorithms are designed to
find these groups under various possible assumptions.
In hard clustering, for example, each point is assigned
with a single cluster to form a partitioning {Sk}K

k=1

such that ∪K
k=1Sk = S and Sk∩Sl = ∅ if k 6= l. As dif-

ferent problems require different notions of structure
it is hard, if not impossible, to have a universal math-
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ematical definition of the goal of clustering that will
apply to any possible application. As a result, a pool
of methods has been developed, and each has its pros
and cons depending on the nature of the data set (see
e.g. Jain, Murphy & Flynn, 1999).

In this paper we consider the task of designing an al-
gorithm to cluster a given data set S without any ad-
ditional information such as the number of clusters K,
bounds on the number of points in the k’th cluster |Sk|,
a parametric statistical model according to which the
data is generated etc. Since often there is more than
one plausible way to partition the data, the algorithm
is required to suggest different ‘good’ partitionings and
associate each of them with a numerical measure that
indicates how good it is. Our work was originally in-
spired by recent contributions in spectral clustering
(Meila & Shi, 2001), where data points were viewed
as nodes of a fully connected graph, and distance be-
tween points was used to define a probability for the
transition of a random walk between them. However,
whereas spectral methods (Shi & Malik, 2000; Meila
& Shi, 2001; Ng, Jordan & Weiss 2001; Kannan, Vem-
pala & Vetta, 2001) rely on the leading eigenvectors,
our approach is based on associating each point with a
particle which moves between points according to the
aformentioned transition matrix, and clustering points
is acheived by clustering the distributions of these N
particles. This is also different from previous work
relating random walk and clustering (e.g. Tishby &
Slonim, 2000; Spielman & Teng, 2004), and it pro-
vides a new approach to data driven clustering which
is both conceptually and practically different from ex-
isting methods.

Following a short description of the notation and some
known results in Section 2, we define in Section 3 the
goal of clustering as it is considered in this paper. In
section 4 we introduce and analyze an algorithm for
clustering discrete distributions. The behavior of the
transition matrix for increasing number of steps is dis-
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cussed in Section 5, leading to an algorithm that finds
informative number of steps (Section 6) and the asso-
ciated number of clusters (Section 7) in the data. The
algorithms are demonstrated numerically and some
practical issues are discussed in Section 7. The pa-
per is concluded in Section 8.

2. Preliminaries

Assume every member of S is a point in some metric
space X with metric d(x, y). Let Ik be the indices of all
the points in the k’th cluster and I = {Ik}K

k=1 denote
the partition. Similarity between pairs of points in S
can be measured by any non-negative monotonically
decreasing function wmn = w (d(sm, sn);σ), with σ be-
ing the length scale of w. The smaller it is, the smaller
is the ‘neighborhood’ of a point. While the results in
this paper can be applied to any metric space with any
function w, for brevity we only discuss

(
Rl, ‖x− y‖2

)
with the popular Gaussian function

wmn = exp
(
−‖sm − sn‖2

σ2

)
. (1)

The pairwise similarities are conveniently summarized
in the N×N kernel matrix W , with elements [W ]mn =
wmn for all m,n = 1, 2, . . . , N . The probability of a
particle x to move from point m to point n is given by
Pmn = wmn∑N

n=1 wmn
. This has the intuitive property that

as ‖sm−sn‖ increases Pmn decreases, and if two points
sn, sn′ are in the same distance from sm then Pmn =
Pmn′ . Applying this normalization to the entire data
set we get the transition matrix P (Meila & Shi, 2001)

P = D−1W , (2)

where D = diag(D11, . . . , DNN ) is a normalization
matrix and Dnn =

∑N
i=1 wni is the volume of the n’th

node. Notice that each row of P sums to 1, and every
entry Pmn is nonnegative, satisfying the conditions for
the rows to be distributions.

Finally, since P plays an important role in our discus-
sion, we summarize some facts about it.

Lemma 1 Assume W is full rank and P is given by
(2). Let λn, vn be the n’th eigenvalue and eigenvector
of P , i.e. Pvn = λnvn, and assume without loss of
generality that λn ≥ λn+1 and ‖vn‖ = 1. Then,
1. P is full rank,
2. λ1 = 1 and v1 = [1, 1, . . . , 1]>/

√
N ,

3. λn is real and |λn| ≤ 1 ∀ n = 2, 3, . . . , N .

The proof is trivial; D is diagonal thus P is defined
by normalizing the rows of W and (1) follows, (2) can
be verified by direct calculation, the first part of (3) is

easily proved using the symmetry of W and the second
part by using the equality λnvn(m) =

∑
i Pmivn(i)

∀n, m, and for each n choosing m = argmaxj |vn(j)|.

3. New Criterion for Clustering

3.1. Desiderata for Nonparametric Clustering

Our goal in this paper is to come up with a method for
clustering which, given S alone, will automatically find
different good partitionings of the data. To this end,
we begin by explicitly stating what type of partitioning
the algorithm is required to find.

1. If data points are close to each other or they have
good paths between them, then they should be
clustered together. Conversely, points that are
far away from each other and don’t have paths
between them should be clustered separately.

2. The number of clusters K should be learned di-
rectly from the data set, without any assumptions
such as their shape or their size |Sk|. If there is
more than one plausible partitioning then they
should all be found.

3. The algorithm should assign all partitionings with
an informative quality measure that is both the-
oretically meaningful and practically useful.

4. If additional knowledge (e.g. the number of clus-
ters K) is given with the data, then it should be
easily and naturally combined with the algorithm.

3.2. Data Exploration by Random Walks

Our approach is based on exploring S by letting N
particles, each of which begins from a different data
point, to move between points according to P . This
is motivated by the observation that if there are no
good paths between clusters then particles tend to stay
within a cluster, independent of the cluster’s shape.
In addition, since we use N particles simultaneously,
then by observing the dynamics of all the particles the
number of groups can be found alongside with find-
ing the partition itself (see Figure 1). There are two
main questions to be asked here (1) what is the ‘right’
number of steps that the particles should be allowed
to take so as to explore the data effectively and (2)
how can the particles ‘report back’ their findings.

We begin by associating each point sn with a particle
xn for all n = 1, 2, . . . , N , and consider P to be the
transition matrix for these particles. The location of
the n’th particle after taking t steps is denoted by
xn(t). So, the distribution of xn(1) is given by Pnm =
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Figure 1. Demostration of multiscale clustering us-
ing markov random walks. Data set S, comprised
of N = 380 points, is clustered by clustering the rows
of P t for different values of t. Left column: P t for
t = 340, 2.1 · 105, 4.8 · 1011, associated with K = 10, 9, 4
respectively. Right column: the resulting partitionings of
the data (shown as colors). Notice how as t increases clus-
ters in larger scale are revealed and how the distributions
of particles, associated with points from the same cluster,
are practically the same.

P(xn(1) = sm) . More generally, as it is well known
from Markov chain theory, the distribution of xn(t) is
given by

P t
nm = P(xn(t) = sm) . (3)

To ease the notation in the sequel we define Ω = P t

and Ωn = P t
n. A key idea in our discussion is the

observation that for separated clusters of any shape
there exist some values of t for which Ωn is similar to
Ωm if sn and sm are in the same cluster. Formally, we
consider a parametric mapping Ψt : Rl 7→ P of each
point sn ∈ Rl to a discrete distribution Ωn ∈ P = {a ∈
RN : an ≥ 0,

∑N
n=1 an = 1}. If the clusters are well

separated, then there exist t such that Ψt has the nice
property of mapping all of the points in a cluster to
almost the same point in the distribution space P, and

for K clusters we get K points in P. So, instead of
clustering the data points directly, a good partitioning
can be found by clustering the distributions for the lo-
cation of the particles with which they are associated.

4. The K-prototypes Algorithm

In Section 3 the problem of clustering points in Rl

was substituted with clustering the set {Ωn}N
n=1. Al-

though in principle regular K-means can be applied
to this problem, it fails to exploit the information con-
veyed in Ωn, being a distribution. Euclidean distance
is not natural for distributions as it gives all of the
elements the same weight. The KL-divergence, on the
other hand, gives more weight to elements of the dis-
tribution with high probability, which is more suitable
for our purposes since usually high probability indi-
cates neighboring points. So, we develop an algorithm
that is similar in nature to the K-means algorithm,
with the KL replacing the norm-2 metric.

4.1. Algorithm

The goal is to find a set of K distributions {Qk}K
k=1,

which we refer to as prototypes, and a partitioning I
such that the objective function

J(Q, I) =
K∑

k=1

∑
m∈Ik

KL(Ωm||Qk)

=
K∑

k=1

∑
m∈Ik

N∑
n=1

Ωmn ln
Ωmn

Qkn
,

(4)

where Q is a K × N matrix with Qk as its kth row,
is minimized. The direction of the KL in (4) was pre-
ferred over the alternative KL(Qk||Ωm) to encourage
good approximations where the entries of Ωm are away
from zero, i.e. for points that are in the same cluster
as sm, which is what we really care about. In addition,
this direction of KL is closely related to maximum like-
lihood modeling of the rows by assuming a multinomial
model with mean given by the prototypes.

The summation over k in (4) results in J being a
nonconvex function, so that a gradient search is only
guarenteed to converge to a local maximum. How-
ever, if we assume that some values of the proto-
types Q(old) and the partitioning I(old) are given, then
new values Q(new), I(new) for which J

(
Q(old), I(old)

)
≥

J
(
Q(new), I(new)

)
can be found. This is acheived

by first leaving Q(old) unchanged and looking for
a partitioning I(new) = argminI J(Q(old), I) that
yields a lower value of J , and then using this par-
titioning to find a new set of prototypes Q(new) =
argminQ J

(
Q, I(new)

)
that further decrease J .
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Input: Transition matrix Ω, number of cluster K
Output: A partitioning I, a matrix of prototypes Q
Algorithm:
0. Initialize: Q(old)

1. Assign points: for k = 1, 2, . . . ,K set
I(new)

k =
{

m : k = argmink KL
(
Ωm||Q(old)

k

)}
2. Update prototypes: for k = 1, 2, . . . ,K set
Q

(new)
k = 1

|I(new)
k |

∑
m∈I(new)

k

Ωm

3. Set Q(old) = Q(new). If stop condition is satisfied,
stop. Otherwise go to 1.

Algorithm 1: K-prototypes

First, it is easy to show (by negation) that

I(new)
k =

{
m : k = argmin

k′
KL

(
Ωm||Q(old)

k′

)}
, (5)

that is assigning each Ωn with Qk for which
KL(Ωm||Qk) is minimized. Next, since I(new)

is assumed to be known when searching for
Q(new) then minQ

∑K
k=1

∑
m∈I(new)

k

KL(Ωm||Qk) =∑K
k=1 minQk

∑
m∈I(new)

k

KL(Ωm||Qk). Thus, Q(new)

can be found by solving the following set of optimiza-
tion problems

Q
(new)
k = argmin

Qk

∑
m∈I(new)

k

N∑
n=1

Ωmn ln
Ωmn

Qkn

s.t.

N∑
n=1

Qkn = 1, Qkn ≥ 0 ∀ n = 1, 2, . . . , N

(6)

for all k = 1, 2, . . . ,K. The solution for this problem,
found using Lagrange multipliers, is given by

Q
(new)
k =

1∣∣∣I(new)
k

∣∣∣
∑

m∈I(new)
k

Ωm . (7)

To conclude, given the t’th order transition matrix Ω
and the number of clusters K, Algorithm 1 finds a par-
titioning of the rows of Ω into K clusters by executing
a simple iterative procedure, similar to K-means, but
one that takes into account the fact that the clustered
points are discrete distributions.

4.2. Initialization of Q

Q(old) can be initialized (Algorithm 1, step 0) arbi-
trarily with some random set of K distributions over
N states. However, since Algorithm 1 only converges
to a local minimum, these values will critically affect
the performance of the algorithm. In practice, it is

Input: Transition matrix Ω, number of cluster K
Output: Star-shaped initialization of Q
Algorithm:
1. Set Q1 = 1

N

∑N
n=1 Ωn (or any row of Ω).

2. For k = 2, . . . ,K set Qk = Ωz where
z = argmaxn minj=1,2,...,k−1 KL(Ωn||Qj)

Algorithm 2: Star-shaped initialization of Q

often advantageous to initialize the prototypes so that
they will ‘cover’ the data and not be too close to each
other. So, instead of generating random prototypes we
can choose any K rows of Ω to initialize Q(old). This
ensures that the prototypes are located in regions of
P populated by rows of Ω. Further improvement can
be gained by requiring the prototypes, in addition to
being part of Ω, to be also far away from each other.
Finally, to avoid the danger of only choosing proto-
types that lie on the edge of the populated subspace
of P the first prototype can be set to be the mean of
Ω. Then, new prototypes are sequentially set to be the
row of Ωn whose distance from its nearest prototype
is maximized. This is implemented in Algorithm 2.

5. On the Principal Components of a
Markov Random Walk

Consider the spectral decomposition of the transition
matrix P = V ΛV −1 where V is the matrix whose n’th
column is vn and Λ = diag (λ1, λ2, . . . , λN ). Then,
P t = V ΛtV −1 and if {λn, vn} is the eigensystem of P
then {λt

n, vn} is the eigensystem of P t. This equiva-
lence between P and P t reveals an important key idea
in our analysis - the eigenvalues of P can be used to
indicate the scale and quality of partitioning, by sepa-
rating between the eigenvalues that survive t steps and
those that don’t. Lemma 2 helps to formulate this by
analysing P t into a weighted sum of N matrices.

Lemma 2 Let the assumptions and notation of
Lemma 1 hold. Then,
1. for any t = 1, 2 . . . the matrix P t is given by

P t =
N∑

n=1

λt
n

vnv>n D

v>n Dvn
. (8)

2. the set of matrices
{

vnv>n D
v>n Dvn

}N

n=1
with weights

{λt
n}N

n=1 form an idempotent-orthogonal basis of P t

The Lemma is proved in Appendix 1. We define an
idempotent-orthogonal basis of a matrix as follow.

Definition 1 (Idempotent-Orthogonal Basis)
Assume A is a square full rank matrix of size N ,
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and let δnm = 1 if n = m and 0 otherwise. The
set of square matrices of size N , {Un}N

n=1, is said
to be an idempotent-orthogonal matrix basis of A if
UnUm = δnmUn and there is a set of N numbers
{µn}N

n=1 such that A =
∑N

n=1 µnUn.

An idempotent matrix satisfy UnUn = Un, and the
orthogonality is due to the condition UnUm = 0 for
n 6= m.

We can now give an intuitive interpretation for the
spectral decomposition of the markov chain P , analo-
gous to principal component analysis (PCA). In PCA
the eigenvectors are pointing in an orthogonal set of
directions with maximum variance, and the eigenval-
ues indicate the variance in these directions. Here, P t

is analyzed into an idempotent-orthogonal basis with
weights λt

n. The fact that |λn| ≤ 1 motivates inter-
preting the eigenvalues as indicators to the structure
in data revealed by the random walk. If λn is close to
1, such that λt

n is also close to 1, the matrix vnv>n D
v>n Dvn

‘survives’ the random walk and is related to stable
groups in the data whereas the λt

n that tends towards
zero are related to decaying basis matrices.

6. Learning t Given K

So far we have assumed that both K and t are known.
In this section the number of clusters is still considered
to be given, but a value of t which yields a transition
matrix P t that efficiently reveals K clusters should be
learned directly from the data. Equation (8) motivates
treating λt

n as an idication to how stable the partition-
ing is. Notice that if the graph that represents the data
is not fully connected but instead given by a collection
of K smaller disconnected graphs (which can be the
case if the clusters are well seperated and we thresh-
old the weights), then λk = 1 for all k = 1, 2, . . . ,K.
In this case, it can be shown that the j’th entry of
the (normalizaed) k’th eigenvector is given by vk(j) =

1√
|Ik|

if sj belong to the k’th cluster and 0 otherwise,

for all k = 1, 2, . . . ,K and j = 1, 2, . . . , N . This im-
plies that limt→∞ P t =

∑K
k=1

vkv>k D

v>k Dvk
. Motivated from

this property, we say that the number of steps tK ef-
fectively reveals K clusters in S if it satisfies

tK = argmax
t

(
λt

K − λt
K+1

)
. (9)

Solving (9) in general is hard, as each eigenvalue can
be positive or negative. However, we can have a closed
form solution for a slightly modified version of (9).

First, note that tK is an estimation for the number of
steps that the N particles need to take to discover K

clusters in data, and replacing tK with tK ± 1 is not
expected to make any difference in practice. Thus, we
can limit ourselves to even values of t so that (9) can
be replaced by

tK = argmax
t even

∆K(t) , (10)

where

∆K(t) = |λK |t − |λK+1|t , (11)

which makes the sign of the eigenvalues irrelevant.
Next, (10) can be solved by allowing t to be continu-
ous, and using tK to be the even integer that is nearest
to the solution of

∂

∂t
∆K(t) = 0 . (12)

Recall from Lemma 1 that λ1 = 1 and |λn| < 1 for
all n = 2, 3, . . . , N (assuming the graph is fully con-
nected). So, |λ1|t − |λ2|t is monotonically increasing
and upper bounded by 1, and ∆K(t) is unimodal for
all K = 2, 3, . . . , N − 1. Lemma 3 can be shown from
(12) and gives an analytical solution for (10).

Lemma 3 The solution for (10) is given by

tK =

 ln
(

ln(|λK+1|)
ln(|λK |)

)
ln(|λK |)

ln(|λK+1|)


even

(13)

for all K = 2, 3, . . . , N−1, where [z]even is the nearest
even integer to z, and t1 →∞.

7. Learning K and t From the Data

7.1. Algorithm

The question that is asked in this section is how can
good pairs of (K, tK) be found from the data, rather
than what is a good tK for a given K. The idea is
as follows; different plausible K can be revealed by in-
creasing t, and the plausibility of the revealed number
of clusters K can be measured by ∆K(t). To be more
percise, if some K is indeed a plausible value, then
there should be some tK such that the eigengap has a
local maxima at tK .

To formalize it, define the maximal eigengap

∆(t) = max
k

∆k(t) (14)

for every even t, and the number of clusters that is
best revealed, as a function of t, by the location of the
maximal eigengap

K(t) = argmax
k

∆k(t) . (15)
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Input: Data set S
Output: M partitioning of S with associated stability

and plausibility measures
{
{Sm

k }
Km

k=1, αm

}M

m=1
.

Algorithm:
1. Compute P according to (2), and find its spectrum.
2. Find T and denote M = |T |.
3. For every m = 1, 2 . . . , M call Algorithm 1 with Ω =
P Tm and K = K(Tm) to find a partitioning {Sm

k }
Km

k=1.
4. Grade partitioning plausibility by αm = ∆(Tm).

Algorithm 3: Multiscale K-prototype clustering

Note the close relation between (15) and (10), where
the former can be viewed as turning the latter on its
head. Notice that generally (i) the scale of data ex-
ploration increases with t, and as a result the revealed
number of clusters K(t) is expected to decrease, and
(ii) there is usually more than a single value of t for
which (15) yields the same answer. Next, to choose
the number of steps tK , define the set of t over which
the same number of clusters K is revealed

TK = {t : K(t) = K} . (16)

Among all members of TK , the number of steps that
best reveals K clusters is tK = argmaxt∈TK

∆k(t).

The results of applying this to a data set S, com-
prised of N = 71 images of hand written digits, are
given in Figure 2. Each image has 8 × 8 pixels, thus
each data point is a member of R64. Notice how
∆(t) and K(t), shown in the bottom row, couple the
search for t with the search for K such that ∆(t)
has local maxima if the partition into K clusters is
plausible. In particular, ∆(t) has 3 local maxima at
t4,3,2 = 60, 9 · 103, 2.4 · 107, and K(t4,3,2) = 4, 3, 2 re-
spectively. Notice how ∆(t4,3,2) = 0.8, 1, 1 can be used
to indicate the plausibility of the resulting partition-
ings and how the number of steps |T4,3,2|, associated
with each partitioning, can be used to indicate how
stable it is. Notice also how the matrices P t4,3,2 give
an intuitive two dimensional description of how each
image relates to the rest of the data set after exploring
it with t4,3,2 steps, which is ideal for the K-prototypes
algorithm.

Figure 3 shows the performance of Algorithm 3 ap-
plied to a data set which consists of 300 noisy and
randomly rotated digits with 3 labels (100 images per
label). Each image is given by 26 × 26 pixels and is
represented as a point in R676. Due to the random ro-
tation of the digits, where the rotation is uniformly dis-
tributed over [0o, 360o), this data set is formed of rings
in R676. Applying K-means to this data set severely
mixes labels 2 and 5, indicating that the associated

2

5

6

P1.2e13

100 200 300

100

200

300

Figure 3. Digits data set. Algorithm 3 applied to a set
of 300 randomly rotated digits with 3 labels. The nature
of this data set is of interlocked rings (see text). The al-
gorithm automatically finds the number of clusters and a
perfect partitioning of the data.

rings are interlocked.

7.2. Analytical Computation of tK

In step 2 of Algorithm 3, the set

T ≡ {t : ∆(t) is a local maxima} (17)

of all local maxima of ∆(t) needs to be found. This can
be done easily by using the fact that T is a subset of
{tK}N−1

K=2, each element of which is found1 analytically
according to Lemma 3. There is no need to scan over
all values of t.

7.3. Hierarchical Algorithm and Comparison
With Other Methods

Algorithm 3 can be easily adjusted to find a single
hierarchical partitioning by modifying steps 3,4. First,
in step 3 only the smallest number of plausible clusters
(smallest member of T ) is used to call algorithm 1.
Then, Algorithm 3 is called recursively for each of the
resulting clusters. Applying this idea to the digits data
set, for example, yields a tree which first splits S into
S1 = A ∪ B ∪ C and S2 = D, then S1 is split into
S11 = A ∪ B and S12 = C etc (see Figure 2). The
results of running our algorithm on another data set,
comprised of 100 face images2, are given in Figure 4.

It is interesting to test other algorithms on these data
sets. However, since our algorithm finds both the hier-
archy and the cluster assignment of the data whereas
other algorithms usually assume some side informa-
tion, a full comparison is hard to obtain. So, we used

1In practice it is sufficient to use some Kmax < N .
2available at http://www.cs.toronto.edu/roweis/data.html
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Figure 2. Results of applying Algorithm 4 to a data set S = A ∪ B ∪ C ∪ D of N = 71 images of digits shown in the
bottom, each of which given by 8 × 8 pixels. Notice how the local maxima of ∆(t) and the assoiated K(t) indicate
plausible number of clusters, and how P tK gives an intuitive description of the revealed partitioning. For K = 2 we get
a partitioning {A∪B ∪C, D}, for K = 3 the partitioning is {A∪B, C, D} and for K = 4 it is {A, B, C, D}. The top-left
figure shows the results of the hierarchical algorithm. Notice how different levels of the tree correspond to different scales
of partitioning. For more details consult the text.

the tree structure found by our algorithm and used
other algorithms to find the cluster assignment for
this structure. We applied the algorithms in (Meila &
Shi, 2001) and in (Ng et al, 2001) to all the data sets
used here. For the former the results were identical to
ours and the latter produced partitionings that were
slightly less consistent with the known labels. This
gives an empirical indication for the advantage of our
algorithm, where in addition to producing comparable
cluster assignments, it also learns the tree structure
from the data.

7.4. Some Implementation Issues

Initializing the lengthscale σ. The role of σ is to
reliably capture the local structure in the data, so that
by increasing t the global structure can be revealed.
Hence choosing a good value for this parameter is cru-
cial for the success of the algorithm. Although we
could scan over σ to find a value that optimizes some
desired property (e.g. maximal eigengap), in practice
we found that setting σ to be smaller than 99% of
{‖sm − sn‖,m 6= n}N

m,n=1 leads to good results.

Similarity of a point and itself. According to (1)
wnn = 1 and Pnn > Pnm for all m 6= n. This is
desirable if we wish outliers to be made into singleton
clusters. Otherwise, setting wnn = 0 forces the particle
to leave the point and explore its neighborhood. In our

experiments we chose the later setting.

Sparsifying W . Small σ results in most of W ’s en-
tries being nearly zero, and in practice sparsifying W
(e.g. by thresholding its entries or by only keeping a
fixed small number of neighbors for each point) is not
expected to significantly change the results. For sparse
W , the complexity of computing the spectral decom-
position of P can be significantly eased, for example
using Lanczos method (for efficient implementation in
MATLABr see also the command eigs).

Complexity analysis. In terms of execution time,
computing the KL divergence costs O(N) for distribu-
tions of length N . Thus, algorithms 2 cost O(KN2)
and algorithms 1 cost O(cKN2), where c is the number
of iterations in algorithm 1 (typically c � N) . Since
P is sparse, then step 1 of Algorithm 3 is O(N2), and
thus Algorithm 3 is O(cMKN2). As for the memory
requirements, all algorithms require O(N2) values to
be stored. These costs are comparable to other affinity
propagation methods such as spectral clustering.

8. Conclusion

We have introduced and analyzed a novel algorithm
for nonparametric clustering where data points are
associated with particles and multiscale clustering is
achieved by clustering the distributions for the loca-
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Figure 4. Results of applying the hirarchical algorithm to a
set of 100 face images. The number of clusters was inferred
from the data and all images, except E7, were clustered
according to their subjects.

tion of these particles. If the number of clusters K is
known, then Algorithm 1 can be used to find a parti-
tioning of the data. If it is not given with the data,
then Algorithm 4 finds several plausible values for this
parameter, calls Algorithm 1 to find a partitioning for
each of these values and grade each of the resulting
partitionings. This is all achieved given the data and
a metric on the feature space alone. We wish to em-
phasize that although the algorithm is motivated by
searching exaustively over the number of steps t, the
analysis yields a closed form solution for all the param-
eters, so the algorithm is especially easy to implement.
In addition, a new algorithm for clustering distribu-
tions over a finite number of states was derived and
analyzed, and links to Markov chain random walks,

the well known PCA decomposition and spectral graph
properties were established.

A. Proof of Lemma 2

We give a short version of the proof, as the long one
is somewhat tedious and left for the full paper. We
wish to express P = V ΛV −1 in terms of V alone (no
dependence on V −1). First, let us rewrite D−1Wv =
λv as D− 1

2 WD− 1
2 D

1
2 v = λD

1
2 v. Since D− 1

2 WD− 1
2 is

symmetric then it has orthogonal eigenvectors(
D

1
2 vn

)>
D

1
2 vm = v>n Dvm = δmnv>n Dvn, (18)

which also implies
[
V >DV

]
mn

= δmnv>n Dvn. Next,
notice that we can write

P = V ΛV −1 = V ΛV −1
(
V >D

)−1
V >D

= V Λ
(
V >DV

)−1
V >D .

(19)

Since both V >DV and Λ are diagonal then
Λ

(
V >DV

)−1 is also diagonal with elements λn

v>n Dvn

and some simple matrix multiplication complete the
proof of the first part of the lemma.

The second part can be proved by verification. The
result of multiplying two basis matrices is given by
vnv>n D
v>n Dvn

vmv>mD
v>mDvm

= vnv>n Dvmv>mD
(v>n Dvn)(v>mDvm)

= vnv>n D
v>n Dvn

δmn, where
the second equality is due to (18). �
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