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ABSTRACT

Motivation: In clinical practice, pathological phenotypes are
often labelled with ordinal scales rather than binary, e.g. the
Gleason grading system for tumor cell differentiation. Howe-
ver, in the literature of microarray analysis, these ordinal
labels have been rarely treated in a principled way. This paper
describes a gene selection algorithm based on Gaussian
processes to discover consistent gene expression patterns
associated with ordinal clinical phenotypes. The technique
of automatic relevance determination is applied to represent
the significance level of the genes in a Bayesian inference
framework.

Results: The usefulness of the proposed algorithm for ordi-
nal labels is demonstrated by the gene expression signature
associated with the Gleason score for prostate cancer data.
Our results demonstrate how multi-gene markers that may be
initially developed with a diagnostic or prognostic application
in mind are also useful as an investigative tool to reveal asso-
ciations between specific molecular and cellular events and
features of tumor physiology. Our algorithm can also be applied
to microarray data with binary labels with results comparable
to other methods in the literature.

Availability: The source code was written in ANSI C, which is
accessible at www.gatsby.ucl.ac.uk/~chuwei/code/gpgenes.tar.
Contact: wild@kgi.edu

1 INTRODUCTION

Microarray technol ogies now enablethesimultaneousinterro-
gation of the expression level of thousands of genesto obtain
a quantitative assessment of their differential activity in a
given tissue or cell. The development of these technologies
has also motivated interest in their use in clinical trials and
diagnosis. For instance, a key aim of many investigators is
to identify genomic factors that are prognostic for survival
or relapse-free survival and which predict those patients who
respond to treatment. Typically, such experiments investigate
onthe order of dozens of samplesfrom different patients. The
samples are usually labelled with some information about the

disease. Many studies have attempted to find subsets of genes
that distinguish well between samples with different labels.
A minimal subset of these relevant genes, often referred to as
“biomarkers’, may be useful in segregating patients in dia-
ghosis, prognosis and for appropriate therapeutic selectionin
clinical management.

Theincreasing use of geneexpression profilesin thesetypes
of study requires computational methods of high accuracy for
solving feature selection and classification problems associa-
ted with these data. Although the cases of binary labels, e.g.
healthy/diseased, have been extensively studied in the litera-
ture [Alon et al., 1999, Furey et al., 2000, Golub et al., 1999,
Guyonetal., 2002, Li et al., 2002, Shevade and Keerthi, 2003],
the observed or measured labels are often ordina in routine
clinical practice, such asthe TNM system for staging prostate
cancer and the Gleason grading system for tumor cell differen-
tiation. These ordinal scales are discrete and finite, differing
from continuous variables, and metric distances between the
adjacent ordinal scales are not defined. In contrast to the
labelsof multipleclasses, ordinal scalesarerank-ordered, e.g.
“low”, “medium” and “high”. Thelearning task of predicting
ordinal variables is known as ordinal regression Interestin-
gly, the popular binary label is a specia case of the ordinal
variablewith only two ranks. Singh et a. [2002] studied gene
expression patternsthat are correl ated with the Gleason score
and built an expression-based model to predict patients' cli-
nical outcome. However, the ordinal nature of the Gleason
score has not previously been treated in a principled way.

Inthispaper, we propose afeature sel ection algorithm based
on Gaussian processes [Williams and Barber, 1998] to iden-
tify biomarkers for tasks with ordinal (or binary) labels. The
important advantage of Gaussian processmodel sistheexplicit
probabilistic framework that can efficiently take into account
the uncertainty in microarray data. The automatic relevance
determination{ARD) parameters ! can be enbedded into the

1 The techniques of automatic relevance determinatigvere originally pro-
posed by MacKay [1994] and Neal [1996] in the context of Bayesian neural
networks as a hierarchical prior over the weights.
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covariance function, which representsthe correl ation between
samples, to control the contribution from individual features.
After Bayesianinference, theoptimal valuesof the ARD para-
meters can be used as the indicator of the relevance level of
aparticular gene. A relatively large ARD parameter indicates
that the associated gene is more correlated with the sample
labels, while a gene weighted with a very small ARD para
meter implies that this gene is irrelevant. Genes can then be
sorted downwards from relevant to irrelevant according to the
optimal values of these ARD parameters. A forward selection
procedure can be further employed to determine the mini-
mal set of relevant genes as biomarkers. We apply this ARD
technique to publicly available microarray gene expression
data sets. The usefulness of these biomarkers are validated by
reference to the biological literature.

The paper isorganized asfollows. In Section 2, we describe
the Gaussian processes model for ordinal regression and then
present our algorithm in detail. The experimental results on
three publicly accessible data sets are reported and discussed
in Section 3. We conclude in Section 4.

2 METHODOLOGY

Consider agene expression dataset D composed of n samples
from different patients. Each sample is represented by the
expression level of the d genes, denoted as a column vector
x; € RY, and labelled by an ordinal scale y; € V. These
labels are denoted as consecutive integers Y = {1,2,...,r}
that keep the known ordering information.

2.1 Bayesian framework

The main idea is to assume an unobservable latent function
f(x;) € R associated with asample x; in aGaussian process,
and the label y; dependent on the latent function f(x;) by
modelling the ordinal scales asintervalson thereal line[Chu
and Ghahramani, 2004].

2.1.1 Prior Probability The values of the latent function
{f(z;)} areassumedtobetherealizationsof randomvariables
inazero-mean Gaussian process. The covariance between the
function values corresponding to the inputs z; and «; can be
defined as

Cov[f (), f(25)] = K(wi, 25) = Xioy meafo ()

where k, > 0. z¢ denotes the ¢-th gene expression level
of the i-th sample and «, is the ARD variable for the /-th
gene that controls the contribution of this gene in the model-
ling. For simplicity, we have chosen the covariance (1) which
corresponds to a prior on functions, where f(x) is alinear
function of 2. Many other covariance functions could be used
[MacKay, 1998]. Theprior probability of theselatent function
values { f(x;)} isamultivariate Gaussian

P(f) = —d—ren (-3F'7F)

— T n _ 1
(2m)2|%]2

where f = [f(x1), f(22),..., f(z,)]T and S isthen x n
covariance matrix whose ij-th element is defined as in (1).
This covariance matrix is positive semi-definite.

2.1.2 Ordinal Likelihood The likelihood P(D|f) is the
joint probability of observing the sample labels given the the
latent function values. The likelihood can be evaluated as a
product of the likelihood function onindividual observations:

P(DIf) = ITizy Pyilf (x:))-

A standard likelihood function for ordina |abels is obtained
from the difference of two cumulative normals

Plyil f(zi)) = @ (21) — P (23) G
where Zi _ byi—j(mi), Z% _ byi—l(:f(m%)’ and (p(z) _

[7 . N(7;0,1)dy. The noise level & > 0 is unknown and
reflectsthe measurement noisein the microarray experiments.
by = —oo and b, = +oco are defined as auxiliary variables,
and we impose theinequality b, < bs < ... < b,_1 onthese
thresholds. The role of the thresholdsisto divide thereal line
into r contiguous intervals; these intervals map the real func-
tion value f(x;) into the discrete variable y; while enforcing
theordinal constraints. Asaspecia casewithr = 2, the ordi-
nal likelihood function (3) becomes the probit function for
binary classification. 2

2.1.3 Model Evidence TheBayesian framework described
above is conditional on the model parameters including the
ARD parameters «, in the covariance function (1), the thres-
hold parameters{b;, ba, ..., b._1 } andthenoiselevel o inthe
likelihood function (3). All these parameters can be collected
into @, which is the model parameter vector. The quantity
P(D) = [P(D|f)P(f)df, moreexactly P(D|0), isknown
as the evidencefor 6, a yardstick for model selection. The
optimal values of the model parameters 6 can be inferred by
maximizing the evidence P(D|0).2

A popular idea for computing the evidence is to approxi-
mate the posterior distribution P(f|D) o« P(D|f)P(f) asa
Gaussian by applying the Laplace approximation at the maxi-
mum aposteriori (MAP) estimate of f, and then the evidence
can be calculated by an explicit formula. The MAP estimate
on the latent functions is the mode point of the posterior dis-
tribution, i.e. fyyap = argmaxy P(f|D). Thisis a convex
programming problem that guarantees a unique solution. The
L aplaceapproximation refersto carrying out the Tayl or expan-
sionfor P(f|D) at the MAP point and retaining the terms up
to the second order [MacKay, 1994]. The evidence can then

2 For multi-label classification problems, the softmax function can be
employed as the likelihood function for multinomial labels, as discussed
by Williams and Barber [1998].

3 Monte Carlo sampling methods can provide a good approximation to the
posterior distribution of 6, but might be prohibitively expensive to use for
high-dimensional problems.
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be approximated as an explicit expression analytically:
P(D|6) ~ exp(—S(fuap)) T+ ZAmar| > (4)

where S(f) = 3f7S1F — 30, Pyl f(x:)), Lisan
n x n identity matrix, and Ayap is adiagona matrix whose
ii-th entry is %W at the MAP estimate.

The gradients of the approximate evidence (4) with respect
to themodel parameters @ can be derived analytically (refer to
Chu and Ghahramani [2004] for detailed formul ae). Gradient-
based optimization methods can then be employed to search
for the maximizer of the evidence 6* = arg maxg P(D|0).
Since there might be several local maxima on the curve of
‘P(D|6), itispossiblethat the optimization problem may stick
at local maximain the determination of 6. We can avoid poor
local maxima by maximizing (4) several times starting from
several different initial states, and simply choose the one with
the highest evidence as our preferred choice 6*.

2.2 Prediction

At the optimal model parameters 6%, |et us take atest sample
x+ for which the target y; is unknown. The correlations bet-
weenthetest case x; and thetraining samples{z; } aredefined
by the covariance function K(x, x;) asin (1). The predictive
distribution over ordinal labels y; is

*\ by,,—llt _ byt—l_ll«t
P(yi|x:, D, 0 )—‘I)<\/m> (I)<\/m> )
where e = kTZ_lfMAp, O't2 = IC(xhxt) — kT(E +
AW‘XP)_lk, andk = [K(z¢, 71), K(2g, 22), . .., K(zg, 20)]
The predictive label is decided as

g = argmax P(y; = iz, D, 0%). (6)

2.3 Forward Selection

The optimal values of «,’s can be determined by the maxi-
mizer of the evidence 6*, denoted as «}’s, which indicates
the relevance level of the genesto the labels. Based on these
values x}'s, we can sort the genes in descending order from
relevant to irrelevant accordingly.

It is desirable to further select aminimal subset of the top-
ranked genes as the biomarkers for modelling, denoted as
M, while keeping the accuracy of the resulting model and
reducing the computational overhead. For this purpose, we
need to define aquality criterion for the quality of a particular
biomarker set. The leave-one-out (LOO) validation error is
popularly used,* which is evaluated as

LOO Error = Z 5(9e # yi) )
t

4 For the microarray datasets with dozens of samples, this might result in
the same LOO error for multiple biomarker sets, which makes it difficult to
discernthedifferencein performance. It isacceptableto employ other quality
criteria, such asthe predictive probability of misclassificationsin LOO which
is defined as -, 5, -, — InP(ye|ze, D, 6*) where P(yi|ze, D, 0%) is
computed asin (5) and y; isdefined asin (6).

Table 1. The outline of our agorithm for gene selection.

Initialize
L oop

generate k folds of the dataset and i = 1
while s <k, leave the i-th fold out
1. maximize evidence on the remaining k-1 folds
optimization package returns the optimal 6*
2. sort the genes by the optimal values of ARD parameters
3. run forward selection to compute the LOO error (7)
4. identify the minimal gene set M
5i=i+1

Ranking
Selection

rank the genes by the number of hitsn the sets {M; }£_,
run forward selection to compute quality criteria

identify the minimal gene set M*

Exit | return the set of selected genes M*

where )", means the sum over all LOO validation cases, 7,
isdefined asin (6) and §(s) is1 if s istrue, otherwise 0.

We can carry out LOO validation on a progressively lar-
ger biomarker set, adding one gene at a time as ordered by
the gene ranking. Here a linear covariance function, defined
as Y], zfaf without ARD parameters, is employed in the
Gaussian process modelling. Theinclusion of arelevant gene
should result in adecrease of the LOO error criterion (7). The
gene set M that yieldstheminimal LOO error isidentified as
the set of biomarkers that contain the most informative genes
for predicting target 1abels.

2.4 Algorithm

Theoptimal valuesof ARD parametersare estimated by maxi-
mizing the approximate evidence, which is also known as
type-1l maximum likelihood estimate. Qi et al. [2004] have
shown that the evidence opti mi zation can lead to overfitting by
picking onefrom numerouslinear classifiersthat can correctly
classify the limited training data. This potential difficulty
becomes more serious on gene expression datasets with only
dozens of samples. To address this problem, we propose a
resampling procedure as the outer loop of our algorithm. The
outline of our algorithm is given in Table 1. We found this
algorithm to be robust both to overfitting and local minima
problems.

Given a gene expression dataset, we randomly generated
k folds after preprocessing. One fold was left out in turn and
evidence optimization wascarried out using thesamplesinthe
remaining k-1 folds. We maximized the evidence (4) severa
timesstartingfromdifferent initial states, and simply chosethe
one with the highest evidence asthe optimal *. Based on the
optimal values of the ARD parameters, the genes were sorted
in descending order from relevant toirrelevant accordingly. In
forward selection, we added one top-ranked gene each time
into the gene subset M; and then carried out LOO cross vali-
dation using thelinear covariance function >°7_, z{* onthe
training samplesin theremaining k-1 folds. The minimal sub-
set that yielded the minimal LOO error wasidentified as M.
This procedure was repeated k times, and k subsets { M, }
were obtained. The number of times each gene was selected
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in the k subsets { M } was used asthefinal criterion for gene
ranking, which werefer to asnumber of hitsGeneswith same
number of hitgre further ranked by the average ARD values.
We carried out forward sel ection again based on thefinal gene
rank to identify the minimal subset of relevant genes M*.

3 RESULTS AND DISCUSSION

Three publicly accessible gene expression datasets, related to
colon, leukaemia and prostate cancer, were analyzed using
our algorithm. In all cases, the expression levels of each sam-
ple were first normalized to zero-mean and unit variance and
then the expression levels of each gene were again normali-
zed to zero-mean and unit variance over all the samples. We
tackled two kinds of taskswith our algorithm, i.e., normal ver-
sustumor (binary classification) and Gleason score prediction
(ordinal regression).

3.1 Normal versus Tumor

Many popular gene ranking methods employ the ¢-statistic as
a criterion to measure the variance of the expression levels
in different classes for each gene [Alon et a., 1999, Furey
et al., 2000]. Variants of the ¢-statistic, such as the measure
of correlation proposed by Golub et a. [1999] and Fisher's
discriminant criterion adapted by Pavlidis et al. [2001], have
also been extensively applied. The ¢-statistic-like methods
make the assumption that the data are described by a Gaus-
sian distribution. However, according to Deng et al. [2004]
and others, the normality condition often cannot be met in
real gene expression datasetswith very limited samples. Non-
parametric tests, e.g. the Wilcoxon rank sum test, are superior
to the ¢-test in this case.

Asapreprocessing step, we used the Wilcoxonrank sumtest
onthenormalized expression datato remove themost uninfor-
meative genes. The significance level was fixed at p=0.01, and
the p-values were calculated using all the samples.® We then
generated 10 folds of the whole data set for the resampling
stepin Table 1. The detailed results on these three datasets are
reported in the following.

The colon cancer dataset, originally analyzed by Alon et a.
[1999], contains expression levels of d = 2000 genes from
40 tumor and 22 normal colon tissues.® There are 373 genes
significantly differentially expressed in the rank sum test at
the significance level of p=0.01.

The leukaemia dataset, originally studied by Golub et al.
[1999],” contains expression values of d = 7129 genes from
47 samples of acute myeloid leukaemia (AML) and 25 samp-
les of acute lymphablastic leukaemia (ALL). There are 1169

5 Since we are using the ranking by p-value as a preprocessing step, it
was unnecessary for us to apply any correction for multiple testing or false
discovery rate.

6 Availableat http://microarray.princeton.edu/oncol ogy/affydata/index.html.
7 The dataset is available at http://www.genome.wi.mit.edu/MPR.
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Fig. 1. The leave-one-out error using the top-ranked genes of the
three datasets. The top-ranked 50 genes are progressively used in the
modelling and the corresponding LOO error (7) are shown ascircles.
In the left-hand figures the genes are ranked by the number of hitsof
our agorithm, while in the right-hand figures the genes are ranked
by their p-values of the Wilcoxon rank sum test. The filled circles
indicate the set of selected genes with minimal LOO error.

genessignificantly differentially expressed at the significance
level of p=0.01.

Singh et al. [2002] carried out microarray expression analy-
sison 12600 genestoidentify genesthat arecorrelated with the
distinction of prostate tumor from normal . Fifty-two samp-
les of prostate tumor and fifty samples of normal cells were
investigated. There are 2717 genes significantly differentialy
expressed at the significance level p=0.01.

The left part of Figure 1 presents the results of the LOO
error for the 50 top-ranked genes sorted by the number of hits
of our algorithm, along with that for the genes ranked by the
p-values of the rank sum test in the right part. A lower LOO
error can be achieved using the gene rank of our agorithm,
although this may involve using more genes than when using
the p-value rankings on the colon and |eukaemia data.

The selected genes are listed in Table 2 - 4 with more des-
criptions. In Table 2, we found that all the 8 genes selected
by Shevade and Keerthi [2003] and 6 of 7 genes selected by
Guyon et al. [2002] areasoinour list. In Table 3, 8 of 9 genes
selected by Shevade and Keerthi [2003] are also selected by
our algorithm. The six genesin bold face were also identified
by Golub et al. [1999] as being part of their 50 gene signa-
turewhich distinguished AML fromALL. Thegeneselections

8 The dataset is available at http://Awww.genome.wi.mit.edu/M PR/prostate.
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Table2. The selected 26 genesin Colon cancer data. “Index” denotesthe serial number of the selected genein the original data. “Hits” is
the number of hitriterion used in our algorithm. “Rank” denotes the rank in the p-values of Wilcoxon rank sumtest. “SLR (8)" denotes
therank in the 8 genes selected by the sparse logistic regression algorithm of [Shevade and Keerthi, 2003]. “RFE (7)” denotestherank in
the 7 genes selected by recursive feature elimination using the support vector machines of [Guyon et al., 2002].

Index | GAN | Description | Hits | Rank | SLR(8) | RFE(7)
377 | Z50753 | h.sapiens mrnafor gcap-ii/uroguanylin precursor 10 1 1 -
1772 | HO08393 | collagen alpha2(xi) chain (homo sapiens) 9 10 2 7
576 | D14812 | human mrnafor orf, complete cds 9 232 7 -
792 | R88740 | atp synthase coupling factor 6, mitochondrial precursor 9 183 5 3
1924 | H64807 | placental folate transporter (homo sapiens) 9 98 4 1
493 | R87126 | myosin heavy chain, nonmuscle (gallus gallus) 8 2 3 -
732 | R67343 | immediate-early regulatory proteinie-n 8 120 - -
1843 | HO6524 | gelsolin precursor, plasma (human) 7 9 6 -
1473 | R54097 | translationd initiation factor 2 beta subunit (human) 7 90 - -
1231 | H49870 | mad protein (homo sapiens) 7 64 - -
14 H20709 | myosin light chain alkali, smooth-muscle isoform (human) 7 32 - -
1346 | T62947 | 60sribosomal protein 124 (arabidopsis thaliana) 6 191 8 2
1360 | H09719 | tubulin apha-6 chain (mus musculus) 6 291 - -
1549 | H11084 | vascular endothelial growth factor (cavia porcellus) 6 117 - -
1210 | R55310 | mitochondrial processing peptidase 6 212 - -
663 | Z17227 | h.sapiens mRNA for transmenbrane receptor protein 6 277 - -
1668 | M82919 | human gamma amino butyric acid (gabaa) receptor beta-3 subunit mMRNA 6 189 - -
1555 | L38929 | Homo sapiens protein tyrosine phosphatase deltamRNA, complete cds 6 288 - -
1579 | M31516 | human decay-accelerating factor mMRNA 5 370 - -
1920 | J04102 | human erythroblastosis virus oncogene homolog 2 (ets-2) mRNA 5 218 - -
1570 | H81558 | procyclic form specific polypeptide bl-alpha precursor 5 289 - 4
211 | T47424 | insulin receptor substrate-1 (homo sapiens) 5 267 - -
1400 | M59040 | human cell adhesion molecule (cd44) mrna, complete cds 4 343 - 6
1221 | R62549 | putative serine/threonine-protein kinase b0464.5 in chromosome iii 4 244 - -
1935 | X62048 | h.sapiensweel hu gene. 3 202 - -
1916 | T41204 | pl4780 92 kd type v collagenase precursor 3 357 - -

Table3. Theselected 14 genesin Leukaemiadata “Index” denotestheserial Table 4. The selected 13 genesin Prostate cancer data. “Index” denotes the

No. of the selected gene. “Hits” is the number of hitaused in our algorithm. serial No. of the selected genein the original data. “Hits’ denotesthe number
“Rank” denotes the p-value rank in the Wilcoxon rank sum test. “SLR (9)” of hitsof our algorithm. “Rank” denotes the p-value rank in Wilcoxon rank

denoted the rank in the 9 genes selected by Shevade and Keerthi [2003]. The sum test.

boldfaced geneswere selected in the 50 gene signature of Golub et al. [1999)].

Index | Description | Hits | Rank

Index | GAN | Description

Hits | Renk | SLR(9)

6185 | X07732:hepatoma mRNA for serine protease hepsin | 10 | 1
4951 | YO07604 | NDP kinase 10 93 2 10234 | AF055376:transcription factor C-MAF mRNA 10 | 163
4847 | X95735 | Zyxin 10 4 3 11871 | U21689:Human glutathione S-transferase-P1lc gene | 10 | 97
1779 | M19507 | MPO Myeloperoxidase 10 29 1 5890 | AJ001625:Homo sapiens mRNA for Pex3 protein 10 | 38
1834 | M23197 | CD33 antigen 9 1 6 5045 | AL080150: cDNA DKFZp434D174 10| 8
6184 | M26708 | PTMA Prothymosin apha 9 133 5 7623 | X51345:Human jun-B mRNA for JUN-B protein 10 | 386
4196 | X17042 | PRG1 Proteoglycan 1 9 32 - 9172 | A1207842:2089h09.x1 Homo sapienscDNA,3end | 10 | 6
2288 | M84526 | DF (adipsin) 8 15 - 6390 | A1093155:a97904.x1 Homo sapiens cDNA, 3 end 9 | 917
1829 | M22960 | PPGB (galactosialidosis) 8 28 - 7539 | X04297:human mrnafor Na,K-atpase alpha-subunit | 9 | 287
6283 | M65214 | TCF3 Transcription factor 3 | 7 46 - 12495 | M98539:Human prostaglandin D2 synthase gene 9 | 129
1882 | M27891 | CST3 Cystatin C 7 3 8 4438 | Al1275081:q165b10.x1 Homo sapiens cDNA, 3 end 8 | 512
3252 | U46499 | glutathione s-transferase 6 6 - 11942 | DO0017:humlic homo sapiens mrnafor lipocortinll | 8 | 45
3847 | U82759 | HoxA9 6 74 4 7139 | AF025887:Homo sapiens GSTA4 mRNA 8 |1062
6169 | M13690 | CINH 6 212 9
6041 | L09209 | APLP2 6 5 -

To estimate the predictive accuracy of our algorithm, we
report in Table 5 the test error rates of a 10-fold cross valida-
arefurther visualized in Figure 2 by presenting thecovariance  tion experiment. One fold was left out for test in turn, and a
matricesin gray scale. The covariance matricesturnouttobe  Gaussian process model was trained on the remaining 9 folds
clearly blocked using the selected genes. Thesamplesinsame  using a gene subset selected by the rank sum test or the pro-
classare generally positively correlated, whereasthe samples  posed algorithm separately. Note that the gene selection was
in different classes are negatively correlated. carried out by using the samples in the 9 training folds only,
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Fig. 2. The covariance matrices for the binary classification tasks.
The covariance matrix is the n x n covariance matrix whose 7;-th
elementsaredefined by thelinear covariancefunction >-7_ zfz5. In
the left-hand figures the covariance matrices were evaluated over al
the original genes, whereas in the right-hand figures the covariance
matrices were evaluated over the genes selected by our agorithm.
The samples have been grouped by their labels. The pairs in rows
fromtoptobottomarefor the Colon, L eukaemiaand Prostate datasets
accordingly. Arrows are used to indicate the range of the blocks.

Table 5. Test error rates in the 10-fold cross validation experiments. The
Wilcoxon rank sum test and the proposed algorithm were applied to select
the gene subset for modelling separately using the training samplesin 9 folds
only, and then tested on the unused fold. “All Genes” denotes that al the
genes were used in modelling, “Rank Sum Test” denotes that the subset of
geneswith p-values|ower than 0.01 in the Wilcoxon rank sum test were used,
and “Biomarkers’ denotesthat the gene subset selected by our algorithm was
used. Test error rates averaged over the 10 folds are reported along with the
standard deviation. Theintegersin the brackets arethetotal test error number
over the 10 folds.

Dataset | AllGenes | RankSumTest |  Biomarkers
Colon  |22.38+19.1296(14) | 16.19+17.60%(10) | 16.19-+13.65%(10)
Leukaemia| 17.44+8.0296(13) | 7.08+9.63(5) | 6.67+9.25%(5)
Prostate | 14.73+12.67%(15) | 12.82+10.66(13) | 8.81--9.74%(9)

and then tested on the unused fold. We observed that the vali-
dation results using hundreds of genes selected by rank sum
test are always better than that using all the original genes.
The improvement is especialy significant on the leukaemia
dataset. Our algorithm can further reduce the number of selec-
ted genesto less than 50, and yields competitive performance
on the colon and leukaemia datasets and much better results
on the prostate.
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Fig. 3. Theleave-one-out error for thetask of predicting the Gleason
score, using the top-ranked gene sets of the prostate data set. The
top-ranked genes are progressively used in the modelling and the
corresponding LOO error numbers are presented in the graphs (a)
and (b) respectively.
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Fig. 4. The covariance matrices for the task of predicting Gleason
score. Asin Figure 2, the left graph presents the covariance matrix
evaluated over al the original genes, while the right graph presents
the matrix evaluated over the selected genes by our proposed algo-
rithm. The samples have been grouped by their ordinal scales, and
arrows are used to indicate the range of the blocks.

3.2 Gleason Score Prediction

The Gleason score is based exclusively on the architectural
pattern of the glands of the prostate tumor. It evaluates how
effectively the cells of any particular cancer are able to struc-
ture themselves into glands resembling those of the normal
prostate. The ability of atumor to mimic normal gland archi-
tectureis called its differentiation. The Gleason grading from
very well differentiated (grade 1) to very poorly differentia-
ted (grade 5) is usually done for the most part by viewing a
low magnification microscopic image of the tumor. There are
two types of Gleason scores, type | and type 1, both of which
have 5 scales. Hereafter, Gleason score refers to the sum of
the grades of the two types.

Singh et al. [2002] investigated fifty-two samples of pro-
state tumor to identify a subset of the 12600 genes correl ated
with pathol ogical features. For each sampl e, the Gleason score
given by the pathologist ranges from 6 to 10. Singh et al.
[2002] treated the Gleason scores as continuous variables in
their analysis. We argue that the Gleason score are ordinal
variables in nature rather than continuous variables, as the
grades are ordered as ranks and the metric distances between
the adjacent grades are not defined. Predicting the Gleason
score from the gene expression data is thus a typical ordinal
regression problem. In our experiments, as only 6 samples
had a score greater than 7, we merged them as the top level,
leading to three levels {= 6,= 7,> 8} with 26, 20 and 6
samples respectively. We generated 6 folds in the resampling
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procedure, and present the quality criteriafor thetop 50 genes
ranked by thenumber of hitén Figure 3(a). Theminimal LOO
error number was observed when the top 21 genes were used.
The selected 21 genes are listed in Table 6 with detailed des-
criptions. We further visualized the selected genesin Figure 4
by presenting the covariance matricesin gray scale. We obser-
ved three clearly blocked regionsfor thethreeordinal scalesin
the covariance matrices using the selected genes. Moreover,
the samples of the level 6 are strongly negatively correlated
to the samples of level > 8.

Cuzick's test is a Wilcoxon-like test for trend across orde-
red groups [Lehmann, 1998]. The informative genes can be
selected based on the p-values of the Cuzick test. The LOO
error numbers using the 100 top-ranked genesare presented in
Figure 3(b). When more than 80 genes are used in modelling,
the LOO error becomes smaller than that obtained using the
top-ranked gene only. A much lower LOO error was obtai-
ned by our algorithm using the top 21 ranked genes. We also
tried the Kruskal-Wallis rank sum test, which is designed for
the case of multiple categories [Lehmann, 1998]. Since this
test isinsensitive to the ordering information among the ordi-
nal scales, the LOO errors are always greater than that using
the first top-ranked gene. This observation also implies that
multi-classification methods should not be generally applied
to tackle ordinal regression problems.

3.3 Discussion

The models we have devel oped to discriminate between nor-
mal and tumor tissues (prostate and colon cancer datasets)
and between AML and ALL arevery promising and reflect to
some degree what isknown of the biology of these systems. A
representative caseis hepsinin Table 4 (agene selected in the
signature discriminating between normal and tumor prostate
samples). Hepsinisacell surface serine proteasethat isknown
to be markedly upregulated in human prostate cancer. Over-
expression of hepsin in a mouse model of non-metastasizing
prostate cancer has no impact on cell proliferation, but causes
disorganization of the basement membrane and promotes pri-
mary prostate cancer progression and metastasisto liver, lung
and bone [Klezovitch et al., 2004].

Of particular interest are the models linking the degree of
differentiation of prostate tumor (Gleason score) to the mole-
cular state of tumor cells. Intheir origina attempt Singh et al.
[2002] have identified genes whose expression was correl ated
to this pathological variable. There are two major limitati-
onsin their approach. Firstly, genes are selected individually
rather than in combination. The second limitation is that the
Gleason score is not a continuous variable but a categorical
one, as mentioned earlier.

Our approach significantly improves on the previous study
by providing astatistical model representing the Gleason score
asan ordered categorical variable. Themolecular signaturewe
have devel opedisrobust and hasgood explanatory power. Alt-
hough the signature we have identified does not include any

of thegenesoriginally selected by Singh et al. [2002] we have
observed some degree of functional overlap. Both signatures,
in fact, include genes involved in insulin response (IGF-1 in
our model, i.e. #3 in Table 6, and Insulin-like growth fac-
tor binding protein 3 in the model developed by Singh et al.
[2002]) and contain members of the complement component
pathway (Complement component 2 in the original analysis
and Complement component 7 in our model, i.e. #21 in Table
6). Interestingly, thelarge majority of the genesin the models
we have devel oped to explain the degree of differentiation of
the tumor are known to be associated to tumor physiology
or are related to molecular functions that are highly informa-
tive of the molecular events underling the pathology. Table 6
shows a functional classification of the selected genes. The
most striking feature of our model isthat seven genes are eit-
her tumor suppressor genes or oncogenes and therefore are
known to be directly involved in the neoplastic process. Our
signature contains five genes with tumor-suppressor activity.
Of these, three have a demonstrated function in prostate can-
cer. The expression of the lysyl oxidase-like protein (LLP,
#13 in Table 6) gene has been reported to be progressively
lost in primary prostate cancer and associated metastatic lesi-
ons [Ren et al., 1998] and is inactivated by methylation and
loss of heterozygosity in human gastric cancers[Kanedaet d .,
2004]. These observationsare strongly supportivefor arole of
LLP asatumor suppressor genein solid tumors. The expres-
sion of IGF1 is aso decreased in human prostate cancer. A
clear tumor-suppressive activity in prostate cancer has been
demonstrated through an apoptotic mechanism [Mutaguchi
et a., 2003]. Another gene selected in our model with a
demonstrated tumor suppressive activity in prostate cancer
is the inducible cAMP early repressor (CREM/ICER, #11).
Thisgeneisanimportant mediator of CAMP antiproliferative
activity that specifically affectsthe tumorigenicity of prostate
cancer cell without affecting their growth[Meminetal., 2002].
Phosphatidylethanolamine N-methyltransferase (PEMT, #9)
isan enzymein liver that catalyzes the stepwise methylation
of phosphatidylethanolamine to phosphatidylcholine. PEMT
protein decreased in pre-neoplastic nodules and virtually dis-
appearedin hepatocellular carcinomainduced by aflatoxin B .
Transfection experiments demonstrated that thelossof PEM T
function may contribute to malignant transformation of hepa-
tocytes [Tessitore et a., 2000]. This enzyme is expressed at
similar levelsin liver and prostate cells (estimated by looking
at the frequency of ESTs in the Unigene database) and the-
refore it is reasonable to hypothesize a similar role may be
shared in these different organs. Last of the tumor suppres-
sor genes included in the model is the RbA p48 gene (#6).
The protein encoded by this gene has been demonstrated to
mediate the retinoblastoma protein tumor suppressor activity
[Qianetal., 1993]. RbA would, in fact, be acomponent of the
histone deacetylase complex that associates with the retinob-
lastoma protein [Nicolas et a., 2000]. Two genes encoding
proteins with oncogenic activity have also been selected in
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Table 6. The selected 21 genes in Prostate cancer data for predicting the Gleason score. “#’ denotes the serial number in the list. “Hits’ denotes the
number of hitriterion used in our agorithm. “Cuzick” denotes the rank in the p-values of the Cuzick test for trend.

# | Index | Description | Functional role | Hits | Cuzick
1 583 | AJ010232:Homo sapiens mRNA for RET finger protein-like 3 Oncogene related 6 1

2 | 7714 | AA630312:ac08f05.s1 Homo sapiens cDNA Not annotated 5 440
3 | 9264 | X57025:Human | GF-I mRNA for insulin-like growth factor | Tumor supressor-like 5 534
4 | 6118 | AW043690:wy80b07.x1 Homo sapiens cDNA Not annotated 4 10
5 | 11213 | D84361 Human mRNA for p52 and p64 isoforms of N-Shc Secretion and signalling 4 82
6 | 7049 | X74262:H.sapiens RbAp48 mRNA encoding retinoblastoma binding protein Tumor supressor-like 4 1329
7 | 8424 | AF022375:Homo sapiens vascular endothelial growth factor mRNA Vascularization 4 5586
8 | 10617 | AW007029:ws49c09.x1 Homo sapiens cDNA Not annotated 3 367
9 6897 | AB029821:Homo sapiens mRNA for phosphatidylethanolamine N-methyltransfer ase Tumor supressor-like 3 507
10 | 8484 | UB1561:Human protein tyrosine phosphatase receptor pi (PTPRP) mRNA Signaling 3 41
11 | 4681 | S68271:cyclic AMP-responsive element modulator (CREM) Tumor supressor-like 3 208
12 | 4325 | AF104942:Homo sapiens ABC transporter MOAT-C (M OAT-C) mRNA Transport drug resistance | 3 4445
13 | 5837 | U24389:Human lysyl oxidase-like protein gene Tumor supressor-like 3 5
14 | 7076 | AF017307:Homo sapiens Ets-related transcription factor (ERT) mRNA Oncogene related 3 85
15 | 9878 | U90028:Homo sapiens bicaudal-D (BICD) mRNA Migration and motility 3 562
16 | 10787 | HSU83661 Homo sapiens multidrug resistance protein 5 (M RP5) mRNA Transport drug resistance | 3 1103
17 | 11233 | HUMRPTK Homo sapiens receptor protein-tyrosine kinase (HEK11) mRNA Migration and motility 3 36
18 | 6749 | AB028978:Homo sapiens MRNA for KIAA1055 protein Not annotated 3 400
19 | 10764 | AF024710 Homo sapiens vascular endothelial growth factor (VEGF) mRNA Vascularization 3 1934
20 | 5809 | J02931:Human placental tissue factor (two forms) mRNA Vascularization 3 376
21 | 8878 | J03507:Human complement protein component C7 mRNA Complement 2 86

the model. These are ERT (#14) and RET (#1). The proteins
of the ETS family are transcription factorsinvolved in signal
transduction, cell cycle progression, and differentiation. It
has been demonstrated that cell neoplastic transformation is
associated with a dramatic increase in ETS transcriptional
activity [de Nigris et a., 2001]. The RET proto-oncogene
encodes a protein that belongs to the tyrosine kinase growth
factor receptor family. The RET proto-oncogene is expressed
in human prostate cancer xenografts and prostate cancer cell
lines[Dawson et al., 1998].

Angiogenesis is another important process in the develop-
ment of the tumor and it is represented in our model by two
genes. These are VEGF (#19) and one of its main regula-
tors, the gene encoding for Tissue factor (#20). VEGF is the
only mitogen that specifically acts on endothelial cells and
its function is key to the development of tumor angiogene-
sisin vivo [Affara and Robertson, 2004]. Tissue factor (TF),
when produced by tumor cells, has been implicated in the
regulation of new blood vessels formation through its ability
to concurrently induce the expression of angiogenic molecu-
les such as vascular endothelial cell growth factor (VEGF),
whileinhibiting the expression of anti-angiogenic molecules.
The expression of TF has been directly linked to vasculari-
zation in prostate cancer [Abdulkadir et a., 2000]. Another
molecular function represented in our model and with great
relevance in tumor physiology is the ability to develop drug
resistance. MRP5/MOAT-C (represented twice in the model
we have developed, i.e. #16 and #12 in Table 6) isadrug resi-
stant gene that has been implicated in the transport of cyclic
nucleotides from cultured cells or isolated tissues [Wielinga
et al., 2003].

Our model representing the degree of tumor differentiation
is particularly interesting since most of the genes are directly
linked to the molecular events underlying tumor progres-
sion (tumor suppressor genes, oncogenes and vascul arization
markers) or are related to cellular function relevant to cancer
physiology (motility and secretion). The function of genes
represented in our models suggests that the ability of tumor
cellsto aggregate into glandul ar-structures may be correl ated
to the regulation of proliferation and survival. Of interest is
aso the link between vascularization and the degree of tumor
differentiation. Thislink is strongly supported by our model
(both VEGF and one of itsactivators have been selected). Ulti-
mately the ability to develop resistance to anti-cancer drugs
could also be linked to the degree of differentiation of the
tumor. Our results demonstrate how multi-gene markers that
may be initially developed with a diagnostic or prognostic
application in mind are also useful as an investigative tool to
reveal associations between specific molecular and cellular
events and features of tumor physiology.

4 CONCLUSIONS

We have presented a feature selection algorithm based on
Gaussian processes for biomarker discovery associated with
ordinal (including binary) clinical phenotypes. Thisalgorithm
isclearly superior to the simple ranking method using the rank
sum test. Our results on the three microarray datesets are very
promising and supported by existing biological knowledge.
Moreover, our algorithm can bedirectly applied for biomarker
discovery inlargescal e proteomicsand metabol omi csdatasets
and thisisafocus of our future work.
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