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ABSTRACT
Motivation: In clinical practice, pathological phenotypes are
often labelled with ordinal scales rather than binary, e.g. the
Gleason grading system for tumor cell differentiation. Howe-
ver, in the literature of microarray analysis, these ordinal
labels have been rarely treated in a principled way. This paper
describes a gene selection algorithm based on Gaussian
processes to discover consistent gene expression patterns
associated with ordinal clinical phenotypes. The technique
of automatic relevance determination is applied to represent
the significance level of the genes in a Bayesian inference
framework.
Results: The usefulness of the proposed algorithm for ordi-
nal labels is demonstrated by the gene expression signature
associated with the Gleason score for prostate cancer data.
Our results demonstrate how multi-gene markers that may be
initially developed with a diagnostic or prognostic application
in mind are also useful as an investigative tool to reveal asso-
ciations between specific molecular and cellular events and
features of tumor physiology. Our algorithm can also be applied
to microarray data with binary labels with results comparable
to other methods in the literature.
Availability: The source code was written in ANSI C, which is
accessible at www.gatsby.ucl.ac.uk/∼chuwei/code/gpgenes.tar.
Contact: wild@kgi.edu

1 INTRODUCTION
Microarray technologies now enable the simultaneous interro-
gation of the expression level of thousands of genes to obtain
a quantitative assessment of their differential activity in a
given tissue or cell. The development of these technologies
has also motivated interest in their use in clinical trials and
diagnosis. For instance, a key aim of many investigators is
to identify genomic factors that are prognostic for survival
or relapse-free survival and which predict those patients who
respond to treatment. Typically, such experiments investigate
on the order of dozens of samples from different patients. The
samples are usually labelled with some information about the

disease. Many studies have attempted to find subsets of genes
that distinguish well between samples with different labels.
A minimal subset of these relevant genes, often referred to as
“biomarkers”, may be useful in segregating patients in dia-
gnosis, prognosis and for appropriate therapeutic selection in
clinical management.

The increasing use of gene expression profiles in these types
of study requires computational methods of high accuracy for
solving feature selection and classification problems associa-
ted with these data. Although the cases of binary labels, e.g.
healthy/diseased, have been extensively studied in the litera-
ture [Alon et al., 1999, Furey et al., 2000, Golub et al., 1999,
Guyon et al., 2002, Li et al., 2002, Shevade and Keerthi, 2003],
the observed or measured labels are often ordinal in routine
clinical practice, such as the TNM system for staging prostate
cancer and the Gleason grading system for tumor cell differen-
tiation. These ordinal scales are discrete and finite, differing
from continuous variables, and metric distances between the
adjacent ordinal scales are not defined. In contrast to the
labels of multiple classes, ordinal scales are rank-ordered, e.g.
“low”, “medium” and “high”. The learning task of predicting
ordinal variables is known as ordinal regression. Interestin-
gly, the popular binary label is a special case of the ordinal
variable with only two ranks. Singh et al. [2002] studied gene
expression patterns that are correlated with the Gleason score
and built an expression-based model to predict patients’ cli-
nical outcome. However, the ordinal nature of the Gleason
score has not previously been treated in a principled way.

In this paper, we propose a feature selection algorithm based
on Gaussian processes [Williams and Barber, 1998] to iden-
tify biomarkers for tasks with ordinal (or binary) labels. The
important advantage of Gaussian process models is the explicit
probabilistic framework that can efficiently take into account
the uncertainty in microarray data. The automatic relevance
determination(ARD) parameters 1 can be embedded into the

1 The techniques of automatic relevance determinationwere originally pro-
posed by MacKay [1994] and Neal [1996] in the context of Bayesian neural
networks as a hierarchical prior over the weights.
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covariance function, which represents the correlation between
samples, to control the contribution from individual features.
After Bayesian inference, the optimal values of the ARD para-
meters can be used as the indicator of the relevance level of
a particular gene. A relatively large ARD parameter indicates
that the associated gene is more correlated with the sample
labels, while a gene weighted with a very small ARD para-
meter implies that this gene is irrelevant. Genes can then be
sorted downwards from relevant to irrelevant according to the
optimal values of these ARD parameters. A forward selection
procedure can be further employed to determine the mini-
mal set of relevant genes as biomarkers. We apply this ARD
technique to publicly available microarray gene expression
data sets. The usefulness of these biomarkers are validated by
reference to the biological literature.

The paper is organized as follows. In Section 2, we describe
the Gaussian processes model for ordinal regression and then
present our algorithm in detail. The experimental results on
three publicly accessible data sets are reported and discussed
in Section 3. We conclude in Section 4.

2 METHODOLOGY
Consider a gene expression data setD composed of n samples
from different patients. Each sample is represented by the
expression level of the d genes, denoted as a column vector
xi ∈ Rd, and labelled by an ordinal scale yi ∈ Y . These
labels are denoted as consecutive integers Y = {1, 2, . . . , r}
that keep the known ordering information.

2.1 Bayesian framework
The main idea is to assume an unobservable latent function
f(xi) ∈ R associated with a sample xi in a Gaussian process,
and the label yi dependent on the latent function f(xi) by
modelling the ordinal scales as intervals on the real line [Chu
and Ghahramani, 2004].

2.1.1 Prior Probability The values of the latent function
{f(xi)} are assumed to be the realizations of random variables
in a zero-mean Gaussian process. The covariance between the
function values corresponding to the inputs xi and xj can be
defined as

Cov[f(xi), f(xj)] = K(xi, xj) =
∑d

�=1 κ�x
�
ix

�
j (1)

where κ� > 0. x�
i denotes the �-th gene expression level

of the i-th sample and κ� is the ARD variable for the �-th
gene that controls the contribution of this gene in the model-
ling. For simplicity, we have chosen the covariance (1) which
corresponds to a prior on functions, where f(x) is a linear
function of x. Many other covariance functions could be used
[MacKay, 1998]. The prior probability of these latent function
values {f(xi)} is a multivariate Gaussian

P(f) = 1

(2π)
n
2 |Σ| 12

exp
(
− 1

2fT Σ−1f
)

(2)

where f = [f(x1), f(x2), . . . , f(xn)]T and Σ is the n × n
covariance matrix whose ij-th element is defined as in (1).
This covariance matrix is positive semi-definite.

2.1.2 Ordinal Likelihood The likelihood P(D|f) is the
joint probability of observing the sample labels given the the
latent function values. The likelihood can be evaluated as a
product of the likelihood function on individual observations:

P(D|f) =
∏n

i=1 P(yi|f(xi)).

A standard likelihood function for ordinal labels is obtained
from the difference of two cumulative normals

P(yi|f(xi)) = Φ
(
zi
1

) − Φ
(
zi
2

)
(3)

where zi
1 = byi

−f(xi)

σ , zi
2 = byi−1−f(xi)

σ , and Φ(z) =∫ z

−∞ N (γ; 0, 1)dγ. The noise level σ > 0 is unknown and
reflects the measurement noise in the microarray experiments.
b0 = −∞ and br = +∞ are defined as auxiliary variables,
and we impose the inequality b1 < b2 < . . . < br−1 on these
thresholds. The role of the thresholds is to divide the real line
into r contiguous intervals; these intervals map the real func-
tion value f(xi) into the discrete variable yi while enforcing
the ordinal constraints. As a special case with r = 2, the ordi-
nal likelihood function (3) becomes the probit function for
binary classification. 2

2.1.3 Model Evidence The Bayesian framework described
above is conditional on the model parameters including the
ARD parameters κ� in the covariance function (1), the thres-
hold parameters {b1, b2, . . . , br−1} and the noise level σ in the
likelihood function (3). All these parameters can be collected
into θ, which is the model parameter vector. The quantity
P(D) =

∫ P(D|f)P(f)df , more exactly P(D|θ), is known
as the evidencefor θ, a yardstick for model selection. The
optimal values of the model parameters θ can be inferred by
maximizing the evidence P(D|θ).3

A popular idea for computing the evidence is to approxi-
mate the posterior distribution P(f |D) ∝ P(D|f)P(f) as a
Gaussian by applying the Laplace approximation at the maxi-
mum a posteriori (MAP) estimate of f , and then the evidence
can be calculated by an explicit formula. The MAP estimate
on the latent functions is the mode point of the posterior dis-
tribution, i.e. fMAP = arg maxf P(f |D). This is a convex
programming problem that guarantees a unique solution. The
Laplace approximation refers to carrying out the Taylor expan-
sion for P(f |D) at the MAP point and retaining the terms up
to the second order [MacKay, 1994]. The evidence can then

2 For multi-label classification problems, the softmax function can be
employed as the likelihood function for multinomial labels, as discussed
by Williams and Barber [1998].
3 Monte Carlo sampling methods can provide a good approximation to the
posterior distribution of θ, but might be prohibitively expensive to use for
high-dimensional problems.
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be approximated as an explicit expression analytically:

P(D|θ) ≈ exp(−S(fMAP))|I + ΣΛMAP|− 1
2 (4)

where S(f) = 1
2fT Σ−1f − ∑n

i=1 lnP(yi|f(xi)), I is an
n × n identity matrix, and ΛMAP is a diagonal matrix whose

ii-th entry is ∂2−lnP(yi|f(xi))
∂2f(xi)

at the MAP estimate.
The gradients of the approximate evidence (4) with respect

to the model parameters θ can be derived analytically (refer to
Chu and Ghahramani [2004] for detailed formulae). Gradient-
based optimization methods can then be employed to search
for the maximizer of the evidence θ� = arg maxθ P(D|θ).
Since there might be several local maxima on the curve of
P(D|θ), it is possible that the optimization problem may stick
at local maxima in the determination of θ. We can avoid poor
local maxima by maximizing (4) several times starting from
several different initial states, and simply choose the one with
the highest evidence as our preferred choice θ�.

2.2 Prediction
At the optimal model parameters θ�, let us take a test sample
xt for which the target yt is unknown. The correlations bet-
ween the test case xt and the training samples {xi} are defined
by the covariance function K(xt, xi) as in (1). The predictive
distribution over ordinal labels yt is

P(yt|xt,D,θ�) = Φ
(

byt−µt√
σ2+σ2

t

)
− Φ

(
byt−1−µt√

σ2+σ2
t

)
(5)

where µt = kT Σ−1fMAP, σ2
t = K(xt, xt) − kT (Σ +

Λ−1
MAP)−1k, andk = [K(xt, x1),K(xt, x2), . . . ,K(xt, xn)]T .

The predictive label is decided as

ŷt = arg max
i

P(yt = i|xt,D,θ�). (6)

2.3 Forward Selection
The optimal values of κ�’s can be determined by the maxi-
mizer of the evidence θ�, denoted as κ�

� ’s, which indicates
the relevance level of the genes to the labels. Based on these
values κ�

� ’s, we can sort the genes in descending order from
relevant to irrelevant accordingly.

It is desirable to further select a minimal subset of the top-
ranked genes as the biomarkers for modelling, denoted as
M, while keeping the accuracy of the resulting model and
reducing the computational overhead. For this purpose, we
need to define a quality criterion for the quality of a particular
biomarker set. The leave-one-out (LOO) validation error is
popularly used,4 which is evaluated as

LOO Error =
∑

t

δ(ŷt �= yt) (7)

4 For the microarray datasets with dozens of samples, this might result in
the same LOO error for multiple biomarker sets, which makes it difficult to
discern the difference in performance. It is acceptable to employ other quality
criteria, such as the predictive probability of misclassifications in LOO which
is defined as

∑
t:ŷt �=yt

− lnP(yt|xt,D, θ�) where P(yt|xt,D, θ�) is
computed as in (5) and ŷt is defined as in (6).

Table 1. The outline of our algorithm for gene selection.

Initialize generate k folds of the data set and i = 1
Loop while i ≤k, leave the i-th fold out

1. maximize evidence on the remaining k-1 folds
optimization package returns the optimal θ�

2. sort the genes by the optimal values of ARD parameters
3. run forward selection to compute the LOO error (7)
4. identify the minimal gene set Mi

5. i = i + 1

Ranking rank the genes by the number of hitsin the sets {Mi}k
i=1

Selection run forward selection to compute quality criteria
identify the minimal gene set M�

Exit return the set of selected genes M�

where
∑

t means the sum over all LOO validation cases, ŷt

is defined as in (6) and δ(s) is 1 if s is true, otherwise 0.
We can carry out LOO validation on a progressively lar-

ger biomarker set, adding one gene at a time as ordered by
the gene ranking. Here a linear covariance function, defined
as

∑d
�=1 x�

ix
�
j without ARD parameters, is employed in the

Gaussian process modelling. The inclusion of a relevant gene
should result in a decrease of the LOO error criterion (7). The
gene set M that yields the minimal LOO error is identified as
the set of biomarkers that contain the most informative genes
for predicting target labels.

2.4 Algorithm
The optimal values of ARD parameters are estimated by maxi-
mizing the approximate evidence, which is also known as
type-II maximum likelihood estimate. Qi et al. [2004] have
shown that the evidence optimization can lead to overfitting by
picking one from numerous linear classifiers that can correctly
classify the limited training data. This potential difficulty
becomes more serious on gene expression datasets with only
dozens of samples. To address this problem, we propose a
resampling procedure as the outer loop of our algorithm. The
outline of our algorithm is given in Table 1. We found this
algorithm to be robust both to overfitting and local minima
problems.

Given a gene expression dataset, we randomly generated
k folds after preprocessing. One fold was left out in turn and
evidence optimization was carried out using the samples in the
remaining k-1 folds. We maximized the evidence (4) several
times starting from different initial states, and simply chose the
one with the highest evidence as the optimal θ�. Based on the
optimal values of the ARD parameters, the genes were sorted
in descending order from relevant to irrelevant accordingly. In
forward selection, we added one top-ranked gene each time
into the gene subset Mi and then carried out LOO cross vali-
dation using the linear covariance function

∑d
�=1 x�

ix
�
j on the

training samples in the remaining k-1 folds. The minimal sub-
set that yielded the minimal LOO error was identified as Mi.
This procedure was repeated k times, and k subsets {Mi}
were obtained. The number of times each gene was selected
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in the k subsets {Mi} was used as the final criterion for gene
ranking, which we refer to as number of hits. Genes with same
number of hitsare further ranked by the average ARD values.
We carried out forward selection again based on the final gene
rank to identify the minimal subset of relevant genes M�.

3 RESULTS AND DISCUSSION
Three publicly accessible gene expression datasets, related to
colon, leukaemia and prostate cancer, were analyzed using
our algorithm. In all cases, the expression levels of each sam-
ple were first normalized to zero-mean and unit variance and
then the expression levels of each gene were again normali-
zed to zero-mean and unit variance over all the samples. We
tackled two kinds of tasks with our algorithm, i.e., normal ver-
sus tumor (binary classification) and Gleason score prediction
(ordinal regression).

3.1 Normal versus Tumor
Many popular gene ranking methods employ the t-statistic as
a criterion to measure the variance of the expression levels
in different classes for each gene [Alon et al., 1999, Furey
et al., 2000]. Variants of the t-statistic, such as the measure
of correlation proposed by Golub et al. [1999] and Fisher’s
discriminant criterion adapted by Pavlidis et al. [2001], have
also been extensively applied. The t-statistic-like methods
make the assumption that the data are described by a Gaus-
sian distribution. However, according to Deng et al. [2004]
and others, the normality condition often cannot be met in
real gene expression datasets with very limited samples. Non-
parametric tests, e.g. the Wilcoxon rank sum test, are superior
to the t-test in this case.

As a preprocessing step, we used the Wilcoxon rank sum test
on the normalized expression data to remove the most uninfor-
mative genes. The significance level was fixed at p=0.01, and
the p-values were calculated using all the samples.5 We then
generated 10 folds of the whole data set for the resampling
step in Table 1. The detailed results on these three datasets are
reported in the following.

The colon cancer dataset, originally analyzed by Alon et al.
[1999], contains expression levels of d = 2000 genes from
40 tumor and 22 normal colon tissues.6 There are 373 genes
significantly differentially expressed in the rank sum test at
the significance level of p=0.01.

The leukaemia dataset, originally studied by Golub et al.
[1999],7 contains expression values of d = 7129 genes from
47 samples of acute myeloid leukaemia (AML) and 25 samp-
les of acute lymphoblastic leukaemia (ALL). There are 1169

5 Since we are using the ranking by p-value as a preprocessing step, it
was unnecessary for us to apply any correction for multiple testing or false
discovery rate.
6 Available at http://microarray.princeton.edu/oncology/affydata/index.html.
7 The dataset is available at http://www.genome.wi.mit.edu/MPR.
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Fig. 1. The leave-one-out error using the top-ranked genes of the
three datasets. The top-ranked 50 genes are progressively used in the
modelling and the corresponding LOO error (7) are shown as circles.
In the left-hand figures the genes are ranked by the number of hitsof
our algorithm, while in the right-hand figures the genes are ranked
by their p-values of the Wilcoxon rank sum test. The filled circles
indicate the set of selected genes with minimal LOO error.

genes significantly differentially expressed at the significance
level of p=0.01.

Singh et al. [2002] carried out microarray expression analy-
sis on 12600 genes to identify genes that are correlated with the
distinction of prostate tumor from normal.8 Fifty-two samp-
les of prostate tumor and fifty samples of normal cells were
investigated. There are 2717 genes significantly differentially
expressed at the significance level p=0.01.

The left part of Figure 1 presents the results of the LOO
error for the 50 top-ranked genes sorted by the number of hits
of our algorithm, along with that for the genes ranked by the
p-values of the rank sum test in the right part. A lower LOO
error can be achieved using the gene rank of our algorithm,
although this may involve using more genes than when using
the p-value rankings on the colon and leukaemia data.

The selected genes are listed in Table 2 - 4 with more des-
criptions. In Table 2, we found that all the 8 genes selected
by Shevade and Keerthi [2003] and 6 of 7 genes selected by
Guyon et al. [2002] are also in our list. In Table 3, 8 of 9 genes
selected by Shevade and Keerthi [2003] are also selected by
our algorithm. The six genes in bold face were also identified
by Golub et al. [1999] as being part of their 50 gene signa-
ture which distinguished AML from ALL. The gene selections

8 The dataset is available at http://www.genome.wi.mit.edu/MPR/prostate.
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Table 2. The selected 26 genes in Colon cancer data. “Index” denotes the serial number of the selected gene in the original data. “Hits” is
the number of hitscriterion used in our algorithm. “Rank” denotes the rank in the p-values of Wilcoxon rank sum test. “SLR (8)” denotes
the rank in the 8 genes selected by the sparse logistic regression algorithm of [Shevade and Keerthi, 2003]. “RFE (7)” denotes the rank in
the 7 genes selected by recursive feature elimination using the support vector machines of [Guyon et al., 2002].

Index GAN Description Hits Rank SLR (8) RFE (7)

377 Z50753 h.sapiens mrna for gcap-ii/uroguanylin precursor 10 1 1 -
1772 H08393 collagen alpha 2(xi) chain (homo sapiens) 9 10 2 7
576 D14812 human mrna for orf, complete cds 9 232 7 -
792 R88740 atp synthase coupling factor 6, mitochondrial precursor 9 183 5 3
1924 H64807 placental folate transporter (homo sapiens) 9 98 4 1
493 R87126 myosin heavy chain, nonmuscle (gallus gallus) 8 2 3 -
732 R67343 immediate-early regulatory protein ie-n 8 120 - -
1843 H06524 gelsolin precursor, plasma (human) 7 9 6 -
1473 R54097 translational initiation factor 2 beta subunit (human) 7 90 - -
1231 H49870 mad protein (homo sapiens) 7 64 - -
14 H20709 myosin light chain alkali, smooth-muscle isoform (human) 7 32 - -

1346 T62947 60s ribosomal protein l24 (arabidopsis thaliana) 6 191 8 2
1360 H09719 tubulin alpha-6 chain (mus musculus) 6 291 - -
1549 H11084 vascular endothelial growth factor (cavia porcellus) 6 117 - -
1210 R55310 mitochondrial processing peptidase 6 212 - -
663 Z17227 h.sapiens mRNA for transmenbrane receptor protein 6 277 - -
1668 M82919 human gamma amino butyric acid (gabaa) receptor beta-3 subunit mRNA 6 189 - -
1555 L38929 Homo sapiens protein tyrosine phosphatase delta mRNA, complete cds 6 288 - -
1579 M31516 human decay-accelerating factor mRNA 5 370 - -
1920 J04102 human erythroblastosis virus oncogene homolog 2 (ets-2) mRNA 5 218 - -
1570 H81558 procyclic form specific polypeptide b1-alpha precursor 5 289 - 4
211 T47424 insulin receptor substrate-1 (homo sapiens) 5 267 - -
1400 M59040 human cell adhesion molecule (cd44) mrna, complete cds 4 343 - 6
1221 R62549 putative serine/threonine-protein kinase b0464.5 in chromosome iii 4 244 - -
1935 X62048 h.sapiens wee1 hu gene. 3 202 - -
1916 T41204 p14780 92 kd type v collagenase precursor 3 357 - -

Table 3. The selected 14 genes in Leukaemia data. “Index” denotes the serial
No. of the selected gene. “Hits” is the number of hitsused in our algorithm.
“Rank” denotes the p-value rank in the Wilcoxon rank sum test. “SLR (9)”
denoted the rank in the 9 genes selected by Shevade and Keerthi [2003]. The
boldfaced genes were selected in the 50 gene signature of Golub et al. [1999].

Index GAN Description Hits Rank SLR(9)

4951 Y07604 NDP kinase 10 93 2
4847 X95735 Zyxin 10 4 3
1779 M19507 MPO Myeloperoxidase 10 29 1
1834 M23197 CD33 antigen 9 1 6
6184 M26708 PTMA Prothymosin alpha 9 133 5
4196 X17042 PRG1 Proteoglycan 1 9 32 -
2288 M84526 DF (adipsin) 8 15 -
1829 M22960 PPGB (galactosialidosis) 8 28 -
6283 M65214 TCF3 Transcription factor 3 7 46 -
1882 M27891 CST3 Cystatin C 7 3 8
3252 U46499 glutathione s-transferase 6 6 -
3847 U82759 HoxA9 6 74 4
6169 M13690 C1NH 6 212 9
6041 L09209 APLP2 6 5 -

are further visualized in Figure 2 by presenting the covariance
matrices in gray scale. The covariance matrices turn out to be
clearly blocked using the selected genes. The samples in same
class are generally positively correlated, whereas the samples
in different classes are negatively correlated.

Table 4. The selected 13 genes in Prostate cancer data. “Index” denotes the
serial No. of the selected gene in the original data. “Hits” denotes the number
of hitsof our algorithm. “Rank” denotes the p-value rank in Wilcoxon rank
sum test.

Index Description Hits Rank

6185 X07732:hepatoma mRNA for serine protease hepsin 10 1
10234 AF055376:transcription factor C-MAF mRNA 10 163
11871 U21689:Human glutathione S-transferase-P1c gene 10 97
5890 AJ001625:Homo sapiens mRNA for Pex3 protein 10 38
5045 AL080150: cDNA DKFZp434D174 10 85
7623 X51345:Human jun-B mRNA for JUN-B protein 10 386
9172 AI207842:ao89h09.x1 Homo sapiens cDNA, 3 end 10 6
6390 AI093155:qa97g04.x1 Homo sapiens cDNA, 3 end 9 917
7539 X04297:human mrna for Na,K-atpase alpha-subunit 9 287
12495 M98539:Human prostaglandin D2 synthase gene 9 129
4438 AI275081:ql65b10.x1 Homo sapiens cDNA, 3 end 8 512
11942 D00017:humlic homo sapiens mrna for lipocortin II 8 45
7139 AF025887:Homo sapiens GSTA4 mRNA 8 1062

To estimate the predictive accuracy of our algorithm, we
report in Table 5 the test error rates of a 10-fold cross valida-
tion experiment. One fold was left out for test in turn, and a
Gaussian process model was trained on the remaining 9 folds
using a gene subset selected by the rank sum test or the pro-
posed algorithm separately. Note that the gene selection was
carried out by using the samples in the 9 training folds only,
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Fig. 2. The covariance matrices for the binary classification tasks.
The covariance matrix is the n × n covariance matrix whose ij-th
elements are defined by the linear covariance function

∑d
�=1 x�

ix
�
j . In

the left-hand figures the covariance matrices were evaluated over all
the original genes, whereas in the right-hand figures the covariance
matrices were evaluated over the genes selected by our algorithm.
The samples have been grouped by their labels. The pairs in rows
from top to bottom are for the Colon, Leukaemia and Prostate datasets
accordingly. Arrows are used to indicate the range of the blocks.

Table 5. Test error rates in the 10-fold cross validation experiments. The
Wilcoxon rank sum test and the proposed algorithm were applied to select
the gene subset for modelling separately using the training samples in 9 folds
only, and then tested on the unused fold. “All Genes” denotes that all the
genes were used in modelling, “Rank Sum Test” denotes that the subset of
genes with p-values lower than 0.01 in the Wilcoxon rank sum test were used,
and “Biomarkers” denotes that the gene subset selected by our algorithm was
used. Test error rates averaged over the 10 folds are reported along with the
standard deviation. The integers in the brackets are the total test error number
over the 10 folds.

Dataset All Genes Rank Sum Test Biomarkers

Colon 22.38±19.12%(14) 16.19±17.60%(10) 16.19±13.65%(10)
Leukaemia 17.44±8.02%(13) 7.08±9.63(5) 6.67±9.25%(5)
Prostate 14.73±12.67%(15) 12.82±10.66(13) 8.81±9.74%(9)

and then tested on the unused fold. We observed that the vali-
dation results using hundreds of genes selected by rank sum
test are always better than that using all the original genes.
The improvement is especially significant on the leukaemia
dataset. Our algorithm can further reduce the number of selec-
ted genes to less than 50, and yields competitive performance
on the colon and leukaemia datasets and much better results
on the prostate.
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Fig. 3. The leave-one-out error for the task of predicting the Gleason
score, using the top-ranked gene sets of the prostate data set. The
top-ranked genes are progressively used in the modelling and the
corresponding LOO error numbers are presented in the graphs (a)
and (b) respectively.
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Fig. 4. The covariance matrices for the task of predicting Gleason
score. As in Figure 2, the left graph presents the covariance matrix
evaluated over all the original genes, while the right graph presents
the matrix evaluated over the selected genes by our proposed algo-
rithm. The samples have been grouped by their ordinal scales, and
arrows are used to indicate the range of the blocks.

3.2 Gleason Score Prediction
The Gleason score is based exclusively on the architectural
pattern of the glands of the prostate tumor. It evaluates how
effectively the cells of any particular cancer are able to struc-
ture themselves into glands resembling those of the normal
prostate. The ability of a tumor to mimic normal gland archi-
tecture is called its differentiation. The Gleason grading from
very well differentiated (grade 1) to very poorly differentia-
ted (grade 5) is usually done for the most part by viewing a
low magnification microscopic image of the tumor. There are
two types of Gleason scores, type I and type II, both of which
have 5 scales. Hereafter, Gleason score refers to the sum of
the grades of the two types.

Singh et al. [2002] investigated fifty-two samples of pro-
state tumor to identify a subset of the 12600 genes correlated
with pathological features. For each sample, the Gleason score
given by the pathologist ranges from 6 to 10. Singh et al.
[2002] treated the Gleason scores as continuous variables in
their analysis. We argue that the Gleason score are ordinal
variables in nature rather than continuous variables, as the
grades are ordered as ranks and the metric distances between
the adjacent grades are not defined. Predicting the Gleason
score from the gene expression data is thus a typical ordinal
regression problem. In our experiments, as only 6 samples
had a score greater than 7, we merged them as the top level,
leading to three levels {= 6,= 7,≥ 8} with 26, 20 and 6
samples respectively. We generated 6 folds in the resampling
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procedure, and present the quality criteria for the top 50 genes
ranked by the number of hitsin Figure 3(a). The minimal LOO
error number was observed when the top 21 genes were used.
The selected 21 genes are listed in Table 6 with detailed des-
criptions. We further visualized the selected genes in Figure 4
by presenting the covariance matrices in gray scale. We obser-
ved three clearly blocked regions for the three ordinal scales in
the covariance matrices using the selected genes. Moreover,
the samples of the level 6 are strongly negatively correlated
to the samples of level ≥ 8.

Cuzick’s test is a Wilcoxon-like test for trend across orde-
red groups [Lehmann, 1998]. The informative genes can be
selected based on the p-values of the Cuzick test. The LOO
error numbers using the 100 top-ranked genes are presented in
Figure 3(b). When more than 80 genes are used in modelling,
the LOO error becomes smaller than that obtained using the
top-ranked gene only. A much lower LOO error was obtai-
ned by our algorithm using the top 21 ranked genes. We also
tried the Kruskal-Wallis rank sum test, which is designed for
the case of multiple categories [Lehmann, 1998]. Since this
test is insensitive to the ordering information among the ordi-
nal scales, the LOO errors are always greater than that using
the first top-ranked gene. This observation also implies that
multi-classification methods should not be generally applied
to tackle ordinal regression problems.

3.3 Discussion
The models we have developed to discriminate between nor-
mal and tumor tissues (prostate and colon cancer datasets)
and between AML and ALL are very promising and reflect to
some degree what is known of the biology of these systems. A
representative case is hepsin in Table 4 (a gene selected in the
signature discriminating between normal and tumor prostate
samples). Hepsin is a cell surface serine protease that is known
to be markedly upregulated in human prostate cancer. Over-
expression of hepsin in a mouse model of non-metastasizing
prostate cancer has no impact on cell proliferation, but causes
disorganization of the basement membrane and promotes pri-
mary prostate cancer progression and metastasis to liver, lung
and bone [Klezovitch et al., 2004].

Of particular interest are the models linking the degree of
differentiation of prostate tumor (Gleason score) to the mole-
cular state of tumor cells. In their original attempt Singh et al.
[2002] have identified genes whose expression was correlated
to this pathological variable. There are two major limitati-
ons in their approach. Firstly, genes are selected individually
rather than in combination. The second limitation is that the
Gleason score is not a continuous variable but a categorical
one, as mentioned earlier.

Our approach significantly improves on the previous study
by providing a statistical model representing the Gleason score
as an ordered categorical variable. The molecular signature we
have developed is robust and has good explanatory power. Alt-
hough the signature we have identified does not include any

of the genes originally selected by Singh et al. [2002] we have
observed some degree of functional overlap. Both signatures,
in fact, include genes involved in insulin response (IGF-I in
our model, i.e. #3 in Table 6, and Insulin-like growth fac-
tor binding protein 3 in the model developed by Singh et al.
[2002]) and contain members of the complement component
pathway (Complement component 2 in the original analysis
and Complement component 7 in our model, i.e. #21 in Table
6). Interestingly, the large majority of the genes in the models
we have developed to explain the degree of differentiation of
the tumor are known to be associated to tumor physiology
or are related to molecular functions that are highly informa-
tive of the molecular events underling the pathology. Table 6
shows a functional classification of the selected genes. The
most striking feature of our model is that seven genes are eit-
her tumor suppressor genes or oncogenes and therefore are
known to be directly involved in the neoplastic process. Our
signature contains five genes with tumor-suppressor activity.
Of these, three have a demonstrated function in prostate can-
cer. The expression of the lysyl oxidase-like protein (LLP,
#13 in Table 6) gene has been reported to be progressively
lost in primary prostate cancer and associated metastatic lesi-
ons [Ren et al., 1998] and is inactivated by methylation and
loss of heterozygosity in human gastric cancers [Kaneda et al.,
2004]. These observations are strongly supportive for a role of
LLP as a tumor suppressor gene in solid tumors. The expres-
sion of IGF1 is also decreased in human prostate cancer. A
clear tumor-suppressive activity in prostate cancer has been
demonstrated through an apoptotic mechanism [Mutaguchi
et al., 2003]. Another gene selected in our model with a
demonstrated tumor suppressive activity in prostate cancer
is the inducible cAMP early repressor (CREM/ICER, #11).
This gene is an important mediator of cAMP antiproliferative
activity that specifically affects the tumorigenicity of prostate
cancer cell without affecting their growth [Memin et al., 2002].
Phosphatidylethanolamine N-methyltransferase (PEMT, #9)
is an enzyme in liver that catalyzes the stepwise methylation
of phosphatidylethanolamine to phosphatidylcholine. PEMT
protein decreased in pre-neoplastic nodules and virtually dis-
appeared in hepatocellular carcinoma induced by aflatoxin B1.
Transfection experiments demonstrated that the loss of PEMT
function may contribute to malignant transformation of hepa-
tocytes [Tessitore et al., 2000]. This enzyme is expressed at
similar levels in liver and prostate cells (estimated by looking
at the frequency of ESTs in the Unigene database) and the-
refore it is reasonable to hypothesize a similar role may be
shared in these different organs. Last of the tumor suppres-
sor genes included in the model is the RbA p48 gene (#6).
The protein encoded by this gene has been demonstrated to
mediate the retinoblastoma protein tumor suppressor activity
[Qian et al., 1993]. RbA would, in fact, be a component of the
histone deacetylase complex that associates with the retinob-
lastoma protein [Nicolas et al., 2000]. Two genes encoding
proteins with oncogenic activity have also been selected in
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Table 6. The selected 21 genes in Prostate cancer data for predicting the Gleason score. “#” denotes the serial number in the list. “Hits” denotes the
number of hitscriterion used in our algorithm. “Cuzick” denotes the rank in the p-values of the Cuzick test for trend.

# Index Description Functional role Hits Cuzick

1 583 AJ010232:Homo sapiens mRNA for RET finger protein-like 3 Oncogene related 6 1
2 7714 AA630312:ac08f05.s1 Homo sapiens cDNA Not annotated 5 440
3 9264 X57025:Human IGF-I mRNA for insulin-like growth factor I Tumor supressor-like 5 534
4 6118 AW043690:wy80b07.x1 Homo sapiens cDNA Not annotated 4 10
5 11213 D84361 Human mRNA for p52 and p64 isoforms of N-Shc Secretion and signalling 4 82
6 7049 X74262:H.sapiens RbAp48 mRNA encoding retinoblastoma binding protein Tumor supressor-like 4 1329
7 8424 AF022375:Homo sapiens vascular endothelial growth factor mRNA Vascularization 4 5586
8 10617 AW007029:ws49c09.x1 Homo sapiens cDNA Not annotated 3 367
9 6897 AB029821:Homo sapiens mRNA for phosphatidylethanolamine N-methyltransferase Tumor supressor-like 3 507
10 8484 U81561:Human protein tyrosine phosphatase receptor pi (PTPRP) mRNA Signaling 3 41
11 4681 S68271:cyclic AMP-responsive element modulator (CREM) Tumor supressor-like 3 208
12 4325 AF104942:Homo sapiens ABC transporter MOAT-C (MOAT-C) mRNA Transport drug resistance 3 4445
13 5837 U24389:Human lysyl oxidase-like protein gene Tumor supressor-like 3 5
14 7076 AF017307:Homo sapiens Ets-related transcription factor (ERT) mRNA Oncogene related 3 85
15 9878 U90028:Homo sapiens bicaudal-D (BICD) mRNA Migration and motility 3 562
16 10787 HSU83661 Homo sapiens multidrug resistance protein 5 (MRP5) mRNA Transport drug resistance 3 1103
17 11233 HUMRPTK Homo sapiens receptor protein-tyrosine kinase (HEK11) mRNA Migration and motility 3 36
18 6749 AB028978:Homo sapiens mRNA for KIAA1055 protein Not annotated 3 400
19 10764 AF024710 Homo sapiens vascular endothelial growth factor (VEGF) mRNA Vascularization 3 1934
20 5809 J02931:Human placental tissue factor (two forms) mRNA Vascularization 3 376
21 8878 J03507:Human complement protein component C7 mRNA Complement 2 86

the model. These are ERT (#14) and RET (#1). The proteins
of the ETS family are transcription factors involved in signal
transduction, cell cycle progression, and differentiation. It
has been demonstrated that cell neoplastic transformation is
associated with a dramatic increase in ETS transcriptional
activity [de Nigris et al., 2001]. The RET proto-oncogene
encodes a protein that belongs to the tyrosine kinase growth
factor receptor family. The RET proto-oncogene is expressed
in human prostate cancer xenografts and prostate cancer cell
lines [Dawson et al., 1998].

Angiogenesis is another important process in the develop-
ment of the tumor and it is represented in our model by two
genes. These are VEGF (#19) and one of its main regula-
tors, the gene encoding for Tissue factor (#20). VEGF is the
only mitogen that specifically acts on endothelial cells and
its function is key to the development of tumor angiogene-
sis in vivo [Affara and Robertson, 2004]. Tissue factor (TF),
when produced by tumor cells, has been implicated in the
regulation of new blood vessels formation through its ability
to concurrently induce the expression of angiogenic molecu-
les such as vascular endothelial cell growth factor (VEGF),
while inhibiting the expression of anti-angiogenic molecules.
The expression of TF has been directly linked to vasculari-
zation in prostate cancer [Abdulkadir et al., 2000]. Another
molecular function represented in our model and with great
relevance in tumor physiology is the ability to develop drug
resistance. MRP5/MOAT-C (represented twice in the model
we have developed, i.e. #16 and #12 in Table 6) is a drug resi-
stant gene that has been implicated in the transport of cyclic
nucleotides from cultured cells or isolated tissues [Wielinga
et al., 2003].

Our model representing the degree of tumor differentiation
is particularly interesting since most of the genes are directly
linked to the molecular events underlying tumor progres-
sion (tumor suppressor genes, oncogenes and vascularization
markers) or are related to cellular function relevant to cancer
physiology (motility and secretion). The function of genes
represented in our models suggests that the ability of tumor
cells to aggregate into glandular-structures may be correlated
to the regulation of proliferation and survival. Of interest is
also the link between vascularization and the degree of tumor
differentiation. This link is strongly supported by our model
(both VEGF and one of its activators have been selected). Ulti-
mately the ability to develop resistance to anti-cancer drugs
could also be linked to the degree of differentiation of the
tumor. Our results demonstrate how multi-gene markers that
may be initially developed with a diagnostic or prognostic
application in mind are also useful as an investigative tool to
reveal associations between specific molecular and cellular
events and features of tumor physiology.

4 CONCLUSIONS
We have presented a feature selection algorithm based on
Gaussian processes for biomarker discovery associated with
ordinal (including binary) clinical phenotypes. This algorithm
is clearly superior to the simple ranking method using the rank
sum test. Our results on the three microarray datesets are very
promising and supported by existing biological knowledge.
Moreover, our algorithm can be directly applied for biomarker
discovery in large scale proteomics and metabolomics datasets
and this is a focus of our future work.
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