
2006/06/19 14:19

1 Conditional Graphical Models

Fernando Pérez-Cruz

Gatsby Computational Neuroscience Unit. Queen Square, London WC1N 3AR, UK.
DTSC. University Carlos III. Leganés (Madrid) SPAIN. fernando@tsc.uc3m.es

Zoubin Ghahramani

Engineering Department. Cambridge University. ...
zoubin@eng.cam.ac.uk

Massimiliano Pontil

Department of Computer Science, UCL. Gower Street London WC1E 6BT, UK.
m.pontil@cs.ucl.ac.uk

In this chapter we propose a modification of CRF-like algorithms that allows
for solving large-scale structured classification problems. Our approach consists
in upper bounding the CRF functional in order to decompose its training into
independent optimisation problems per clique. Furthermore we show that each
sub-problem corresponds to solving a multiclass learning task in each clique, which
enlarges the applicability of these tools for large-scale structural learning problems.
Before presenting the Conditional Graphical Model (CGM), as we refer to this
procedure, we review the family of CRF algorithms. We concentrate on the best
known procedures and standard generalisations of CRFs. The objective of this
introduction is analysing from the same viewpoint the proposed solutions in the
literature to tackle this problem, which allows comparing their different features.
We complete the chapter with a case study, in which we show the possibility to
work with large-scale problems using CGM and that the obtained performance is
comparable to the result with CRF-like algorithms.

1.1 Introduction

In the last decade machine learning tools have moved from heuristic based ap-
proaches to more theoretical based ones. There has been an explosion of work on

2006/06/19 14:19

2 Conditional Graphical Models

theoretical and algorithmic developments, as well as potential applications to real-
world problems. In particular, in the pattern recognition field, the appearance of
the Support Vector Machines (SVMs) (Boser et al. (1992)) blossomed the research
into new machine learning algorithms and they bought the kernel concept into
the machine learning community (Schölkopf and Smola (2001)). Nevertheless, most
real-life applications of pattern recognition cannot be readily cast as a binary (or
multiclass) learning problem, because they present an inherent structure that can-
not be exploited by general classification algorithms. Some of these applications
such as speech or object recognition have developed their own research field. They
use a mixture of machine learning tools with specific knowledge about each appli-
cation to provide meaningful solutions to these relevant problems. But there are
many others that can benefit from a machine learning approach, if we are capable
of embedding their structure into a generic pattern recognition tool.

Conditional Random Fields (CRFs) address this general problem as an extension
of logistic regression for multiclass problems. In their seminal work Lafferty et al.
(2001) assume the output for each sample can be expressed as a set of interdepen-
dent labels and that this dependency can be captured by an undirected graphical
model. They exploit the graphical model structure to avoid the exponential growth
of the complexity with the number of labels in each output. There are many differ-
ent machine learning problems that can be represented by this setting (Dietterich,
2002), such as optical character recognition, part-of-speech tagging, collective web
page classification, mobile fraud detection, or pitch accent prediction. There has
been several extensions to CRFs using kernels (Altun et al., 2004a,b; Lafferty et al.,
2004), Bayesian learning (Qi et al., 2005), maximum margin solution (Altun et al.,
2003; Taskar et al., 2004) and 2D CRFs (Kumar and Hebert, 2004).

Although the use of an undirected graphical model makes these procedures
tractable, they are difficult to train, needing custom-made optimization tools, and
they cannot solve large-scale problems. In this chapter, we present (kernel) Condi-
tional Graphical Models (CGMs), which simplifies the training phase of CRF-like
algorithms to solve large-scale structured classification problems. This algorithmic
proposal is based on the same principle used for solving the binary classification
problem, in which the 0–1 loss is replaced by a convex upper bound to ensure the
optimal solution can be easily computed. In our case, we replace the CRF-like algo-
rithm loss by another convex loss-function that decouples the training of each clique
in the undirected graph. CGM optimisation is solved independently per clique us-
ing any general multi-classification algorithm. CGM complexity depends on the
selected multiclass learning tool, so it opens the possibility of solving large-scale
problems as there are inexpensive multiclass tools, such as SVMs.

Outline of the Chapter This chapter is divided in two main sections. In
the first one, we review CRF-like algorithms and present them using the same
notation. Studying the different approaches for solving this fascinating machine
learning problem from the same perspective allows a broad comparison between
these algorithms. This knowledge helps us understand which algorithm is most

2006/06/19 14:19

1.2 A Unifying Review 3

suitable for each structural learning problem. We have also made an effort to
simplify the notation so the algorithms are readily understood. In the second
part, we introduce Conditional Graphical Models. We first show how a simple
transformation of the general CRF-algorithm loss-function can reduce enormously
the complexity of its training procedure and then examine in detail the hinge-loss
case, helping us understand how the proposed procedure works. We complete the
chapter with a case study, showing the advantages of CGMs for solving large-scale
problems and using more complex structures.

1.2 A Unifying Review

The objective of this section is two fold; first present all CRF-like algorithms in
a unifying framework in order to compare them and understand their different
properties; and second introduce the proposed notation. For these algorithms
notation is an issue of its own, as it can be complicated and might be difficult
to follow.

We address the general supervised classification problem, given a labelled training
data set D = {(xn,yn)}N

n=1, predict the label y∗ for a new given input x∗, where
the input xn ∈ X and the label yn ∈ Y = Y1 × Y2 × · · · × YL in which each
Y� = {1, 2, . . . , q}. L might depend on each training example (Ln) and q might
be different for each element in Y (q�), but to keep the notation simple we use a
unique L for all the samples and a unique q for all the labels. This simplification is
exclusive used for presentation clarity and does not limit the applicability of any of
the presented procedures for the more general case. This problem can be seen as a
huge multi-class learning problem with qL possible labels, and it is general enough
to contain as special cases standard multi-class classification (L = 1) and binary
classification (L = 1 and q = 2).

We start from a probabilistic model that enables us to compute the posterior
probability for all the possible labellings: p(y∗|x∗,D). We are interested in finding
the labelling with highest probability: maxy∗{p(y∗|x∗,D)}. From the Maximum
a Posteriori (MAP) approach to learning models, we make the connection with
regularised risk minimization, and solutions to the problem using non-probabilistic
discriminative methods, such as Support Vector Machines (SVMs).

We are given a set of features (φ(xn,yn)) that transform the data into a feature
space, in which we can solve the classification problem using a linear combination
of these features. The softmax function:

p(yn|xn,w) =
exp

(
w�φ(xn,yn)

)
∑
y

exp
(
w�φ(xn,y)

) (1.1)

is a standard likelihood function for linear multi-classification problems. In (1.1),
we are using an exponential family model to represent the likelihood function, in

2006/06/19 14:19

4 Conditional Graphical Models

which a set of features are linearly combine to construct the probability density of
yn. The denominator is known as the partition function and it comprises the sum
over all qL possible labelling of y to ensure that p(yn|xn,w) adds up to one. In this
equation we have used y as a compact running index to represent the sum over all

possible labelling, i.e.
∑
y

exp
(
w�φ(xn,y)

)
=

q∑
i1=1

q∑
i2=1

· · ·
q∑

iL=1

exp
(
w�φ(xn,y)

)
with y = [i1, i2, . . . , iL]�.

We can compute the posterior over the weights using Bayes rule:

p(w|Y,X) =
p(Y|w,X)p(w)

p(Y|X)
(1.2)

where Y = [y1, . . . ,yN], X = [x1, . . . ,xN] and p(Y|w,X) =
∏

n p(yn|xn,w). The
prior over w is usually assumed to be an independent and identical zero-mean
Gaussian distribution for each component:

p(w) =
1√

(2πC)H
exp

(‖w‖2

2C

)
(1.3)

where w ∈ R
H .

The prediction for a new data point, integrating out the weights, is:

p(y∗|x∗,D) =
∫

p(y∗|x∗,w)p(w|Y,X)dw (1.4)

The complexity of this problem grows exponentially in L –the length of the label
vector– and we need to simplify it to work with large values of q and/or L. The
complexity in (1.4) depends exponentially in L in many ways. First of all, we need
to solve this equation for all qL possible labelling of y∗. Second, the complexity
of p(y∗|x∗,w) depends on the partition function in (1.1), which is the sum of qL

terms. Finally to compute the posterior term p(w|Y,X) we need to evaluate the
likelihood of the N training examples and each needs to evaluate a sum of qL terms.
Therefore the total complexity is O(NqL). Lafferty et al. (2001) propose to use an
undirected acyclic graph over the labels. This graph makes it possible to efficiently
compute the denominator in (1.1) using a forward-backward algorithm. Lafferty
et al. (2001) define Conditional Random Fields (CRFs) as:

Definition 1 (Conditional Random Field) Let G = (V, E) be a graph such
that yn is indexed by the vertices of G, then (xn,yn) is a conditional random field
in case, when conditioned on xn, the random variables yn = [yn1, yn2, . . . , ynL]�

obey the Markov property with respect to the graph:

p(yn�|xn, yn�′ ,∀�′ �= �) = p(yn�|xn, yn�′ ,∀�′ n∼ �) (1.5)

where �′ n∼ � indicates that node �′ is neighbour of node � in the graph.

2006/06/19 14:19

1.2 A Unifying Review 5

Therefore by the fundamental theorem of random fields, the distribution of yn

can be simplified to:

p(yn|xn,w) ∝ exp

(
T∑

t=1

w�
t φt(xn,ynt)

)
(1.6)

where the sum over t runs over the T maximal cliques in the graph. Note that each
feature depends on the clique t, which can be used to provide a different set of
features for each clique. For example, a feature can select a part of the input xn,
which is relevant for the labels in the tth clique.

y
n1 y

n2

y
n1

y
n2

y
n3

y
n3

y
n4

t=1 t=2 t=3

l=1 l=2 l=3 l=4

y
n

x
n

Figure 1.1 We show a chain for a 4D label yn = [yn1, yn2, yn3, yn4]
�. We have labelled

the nodes (yn�) and the cliques (ynt) from left to right, i.e. yn2 = [yn2, yn3]
�. Therefore

boldfaced yn2 indicates the second clique and italic yn2 indicates the second node. We
have also introduced xn in the graph to indicate that the labels are conditioned on the
input.

Before presenting the family of CRF algorithms, let us explicitly state the no-
tation that is being used throughout the paper. The running indices n, � and t

represent, respectively, the training samples, the nodes in the graph (the compo-
nents in each yn = [yn1, yn2, . . . , yn�]�) the cliques in the graph. Therefore yn�

is the �-th entry in the n training sample and ynt represents the labels of the n

training sample associated with the t-th clique, i.e. ynt = [yn�1 , yn�2 , . . .]
� and its

length depends on the number of variables in each clique (typically 2). We also
use as running indices y�, yt and y to denote that a sum runs, respectively, over
all possible configurations in node �, all possible configurations in t-th clique and

all possible labelling in the graph. Hence, for a node:
∑
y�

(·) =
q∑

i=1

(·); for a clique

2006/06/19 14:19

6 Conditional Graphical Models

with two nodes:
∑
yt

(·) =
q∑

i1=1

q∑
i2=1

(·) with yt = [i1, i2]�; and for the whole graph:

∑
y

(·) =
q∑

i1=1

q∑
i2=1

· · ·
q∑

iL=1

(·) with y = [i1, i2, . . . iL]�. The subindex in y/y tells us

what are we summing over, the configuration of nodes (y�), cliques (yt) or graphs
(y). We use boldface for y and yt as they represent a vector of labels and italic
for y� as it represents a scalar value. Although using the index to carry extra infor-
mation might be misleading at first, it greatly simplifies the notation in the paper.
For example, it allows to understand the differences between yn (the output of the
n training example) and yt (a running index over all possible labels in t-th clique)
without explicitly mentioning it. Also, we use the standard matrix notation with
bold upper cases for matrices, bold lower cases for column vectors and italic for
scalars. We have depicted in Figure 1.1 a simple acyclic graph over y to show a
type of graphical model supported by CRFs and to clarify the notation. In this
graph each yn has four labels yn = [yn1, yn2, yn3, yn4]� and each clique has two la-
bels yn1 = [yn1, yn2]� . . ., yn3 = [yn3, yn4]�. We use throughout the paper boldface
for cliques and graphs and italic for nodes.

Lafferty et al. (2001) propose to train the parameters of the CRF model by
maximum likelihood (ML). We present the maximum a posteriori (MAP) version,
because it is easier to relate to similar approaches and because we can readily obtain
the ML solution from the MAP functional by eliminating the prior term.

wMAP = argmax
w

p(w|Y,X) = argmin
w

{− log (p(w)) − log (p(Y|w,X))}

= argmin
w

{
1
2
‖w‖2 + C

N∑
n=1

[
log

(∑
y

exp (o(xn,y))

)
− o(xn,yn)

]}

(1.7)

where

o(xn,y) =
T∑

t=1

w�
t φt(xn,yt), (1.8)

and the sum over y runs over the qL possible labels. This sum can be efficiently
computed using a forward-backward algorithm if the proposed graph for the CRF
has no cycles, see Lafferty et al. (2001) for further details.

In (1.7) we readily see that the loss-function compares the true output o(xn,yn)
with all the other outputs log

(∑
y exp (o(xn,y))

)
. This loss-function is always

nonnegative log
(∑

y exp (o(xn,y))
)

> log (exp (o(xn,yn))) = o(xn,yn) and it is
close to zero iff o(xn,yn) � o(xn,y) ∀y �= yn. The norm of w is a regulariser
to avoid overfitting. This functional is convex and can be solved using different
techniques (Wallach (2002)). The inference phase can be done using a Viterbi-like
algorithm over the labels in the graph.

2006/06/19 14:19

1.2 A Unifying Review 7

Bayesian Conditional Random Fields (B-CRFs) (Qi et al. (2005)) have been
recently proposed, in which the posterior over the weight (1.2) is approximated by
a Gaussian using the Power Expectation Propagation (EP) algorithm (Minka and
Lafferty (2002)). Once the posterior has been estimated, predictions can be also
made using an EP algorithm that considers an independent distribution for each
label.

CRFs were initially proposed to solve the multi-label problem using a known set of
features (φ(xn,yn)). Its functional in (1.7) fulfils the conditions of the Representer
theorem in Schölkopf and Smola (2001) (which is a generalization of the Representer
theorem originally proposed by Kimeldorf and Wahba (1971)). Therefore we can
represent the optimal solution as a linear combination of the training examples:

wt =
N∑

n′=1

∑
y′

t

βt
n′,y′

t
φt(xn′ ,y′

t) ∀t (1.9)

If we define the kernel for each feature in each clique as: κt(xn′ ,yn′t,xn,ynt) =
φ�

t (xn′ ,yn′t)φt(xn,ynt), we can still obtain the MAP estimate in terms of β’s by
solving (1.7). In this case the output of the classifier can be written as:

o(xn,y) =
T∑

t=1

N∑
n′=1

∑
y′

t

βt
n′,y′

t
κt(xn′ ,y′

t,xn,yt) (1.10)

which is the standard kernel formulation for multi-class problems. o(xn,y) is
computed as a linear combination of the kernels involving all the inputs in the
training set with every possible labelling of the outputs.

The number of β grows as N
∏T

t=1 q|yt|, where |yt| indicates the number of
nodes in the t-th clique. For a chain (or tree-like structure) the number of β

is NTq2, which is linear in the number of training samples and cliques and
quadratic in the possible labellings in each node. If we had not used the graph
to simplify the dependencies between the labels, the output would be o(xn,y) =∑N

n′=1

∑
y′ βn′,y′κ(xn′ ,y′,xn,y) and the number of β’s would grow as NqL, which

increases exponentially with the length of the label vector.
Using the Representer theorem and the kernel trick to solve CRFs was indepen-

dently proposed by Lafferty et al. (2004) and Altun et al. (2004a). We refer to the
general approach as Kernel Conditional Random Fields (K-CRFs). In both of these
papers the authors propose to simplify the solution by forcing (in a smart and con-
trolled way) that some β should be zero at the solution. The runtime complexity
to infer the label of a new input sequence does not grow with the number of train-
ing samples. Otherwise all β are nonzero due to the applied loss-function (logistic
regression). Another option to get a sparse solution in terms of the β is to change
the loss-function by a hinge-loss, which is presented in the following section.

2006/06/19 14:19

8 Conditional Graphical Models

1.2.1 Support Vector Machines

Once we have described the optimization of CRFs as the minimization in (1.7),
the comparison with SVMs is straightforward, as we can substitute the logistic
regression loss-function by any other, such as the hinge-loss used by SVMs.

There are two alternative formulation for multi-class SVMs: Weston and Watkins
(1998) and Crammer and Singer (2001). The difference lies in how they penalised the
training errors. In Weston and Watkins (1998), the M-SVM penalises any possible
labelling that provides a larger output than the true labelling. While in Crammer
and Singer (2001), the M-SVM only penalises the largest incorrect labelling, if it is
greater than the true labelling. For this problem, in which the number of possible
labellings grows exponentially, the formulation by Weston and Watkins (1998) can
result in an exponential growth in the number of nonzero support vectors and
therefore it is more advisable to use the formulation by Crammer and Singer (2001).

The M-SVM formulation by Crammer and Singer (2001) can be represented as
an unconstrained optimisation problem:

min
w

{
1
2
‖w‖2 + C

N∑
n=1

[
max

y

(
Myn,y + o(xn,y) − o(xn,yn)

)]
+

}

where Myn,y is the margin that depends on the true labelling and the labelling that
it is being compared against and [u]+ = max(0, u) is the hinge-loss. This functional
is equivalent to (1.7) replacing the logistic regression loss-function by the SVM’s
hinge-loss.

This formulation can be expressed in the more standard constrained optimization
setting, in which we need to optimise:

min
w,ξn

{
1
2
‖w‖2 + C

N∑
n=1

ξn

}
(1.11)

subject to:

o(xn,yn) − o(xn,y) ≥ Myn,y − ξn ∀n,∀y (1.12)

where Myn,yn = 0 to ensure that ξn ≥ 0. The number of constraints grows
exponentially in L (qL) but as there is only one ξn per training sample there are
only few active constraints for each sample, typically none or two. Thus the growth
of the complexity (nonzero Lagrange multipliers) are not exponential in L. This
formulation is equivalent to the Hidden Markov Support Vector Machine (HM-
SVM) proposed in Altun et al. (2003) with small variations on how the margin is
imposed and the slack variable ξn is penalised.

Finally, there has been an independent formulation of this solution, known as Max
Margin Markov networks (M3 nets) by Taskar et al. (2004), in which the above
formulation is simplified, not needing exponentially many Lagrange multipliers

2006/06/19 14:19

1.2 A Unifying Review 9

to solve it. We believe the easiest way to present M3 nets is working from the
Lagrangian of (1.11)

L(w, ξn, αn,y) =
1
2
‖w‖2 + C

N∑
n=1

ξn

−
N∑

n=1

∑
y

αn,y

(T∑
t=1

w�
t φt(xn,ynt) −

T∑
t=1

w�
t φt(xn,yt)

−
L∑

�=1

[1 − δ(yn�, y�)] + ξn

)
(1.13)

in which we have substituted o(xn,y) by its definition in (1.8) and we have defined
the margin per node to be the Hamming distance between the true and compared
labels as proposed by Taskar et al. (2004). Now for each training sample and each
configuration in every clique, we define:

βt
n,yt

=
∑
y∼yt

αn,y ∀n, ∀t,∀yt (1.14)

where the sum runs over all possible labelling of y with the labels in the t-th clique
is fixed at yt. And for each configuration in every node, we define:

β�
n,y�

=
∑
y∼y�

αn,y ∀n, ∀�,∀y� (1.15)

Thus we can rewrite the Lagrange functional (1.13) in terms of βt
n,yt

and β�
n,y�

as follows:

L(w, ξn, βt
n,yt

, β�
n,y�

) =
1
2
‖w‖2 + C

N∑
n=1

ξn

−
N∑

n=1

T∑
t=1

∑
yt

βt
n,yt

(
w�

t φt(xn,ynt) − w�
t φt(xn,yt) + ξn

)

+
N∑

n=1

L∑
�=1

∑
y�

β�
n,y�

[1 − δ(yn�, y�)] (1.16)

in which we can see that the sum over y (qL terms) has been replaced by sums
over yt (q2 terms) and over y� (q terms). We have as many βt

n,yt
as we did for

the K-CRFs and the β�
n,y�

are significantly fewer, reducing the exponentially many
Lagrange multipliers (αn,y) in (1.13).

Note that the β are not independent from each other and when solving the
Lagrange functional we have to impose an additional constraint, besides the β

being positive.

β�
n,y�

=
∑

yt∼y�

βt
n,yt

(1.17)

2006/06/19 14:19

10 Conditional Graphical Models

This constraint is necessary to ensure that the α can be recovered from the β

and that we are obtaining the same solution as in the HM-SVM. This constraint
must hold for all the samples, for all the nodes, for all the cliques that contain the
node � and for all possible labellings in the node.

1.2.2 Summary

In this section we have presented the family of CRF algorithms. We have discussed
CRF (Lafferty et al. (2001)), B-CRF (Qi et al. (2005)), K-CRF (Altun et al.
(2004a,b); Lafferty et al. (2004)), HM-SVM (Altun et al. (2003)) and M3 nets
(Taskar et al. (2004)). In all these algorithms an exponentially growing structured
multiclass learning problem is simplified by imposing a graphical model over the
output space. This simplification allows solving the multi-classification tractably
both in the needed computational power and in the training sample size. In Table
1.1, we classify all this procedures according to their relevant properties. The
main difference HM-SVM and M3 nets lies within the optimization procedure, as
explained in the previous section (it does not show up in the table).

Table 1.1 Comparisons of CFR-like algorithms.

Probabilistic output Kernels loss-function

CRF No No Logistic regression

B-CRF Yes No Logistic regression

K-CRF No Yes Logistic regression

HM-SVM No Yes Hinge-loss

M3 nets No Yes Hinge-loss

1.3 Conditional Graphical Models

The CRF-like algorithms can be represented in a general form by the following
convex optimization problem:

min
w

1
2

T∑
t=1

||wt||2 + C
N∑

n=1

L

(
T∑

t=1

w�
t φt(xn,yt)

)
(1.18)

where L(·) represent the loss-function and we have replaced w by w = [w1,w2, . . . ,wT]�.
The used of a logistic regression loss-function leads us to (1.7) and the use of the
hinge-loss to (1.11). Any other loss-function gives rise to other CRF-like algorithm,
i.e. LS-CRF with a quadratic loss-function.

In our proposal, (Kernel) Conditional Graphical Models (CGM), we upper bound
the CRF loss-function to obtain an optimization functional that it is significantly

2006/06/19 14:19

1.3 Conditional Graphical Models 11

easier to optimise and can be addressed using any multiclass learning tool. The idea
behind CGM is identical to the one used to solve binary classification problems.
In binary classification, the 0–1 loss, which is non-convex and non-differentiable, is
replaced by a convex loss-function (square loss, hinge loss, logistic regression, . . .)
that upper bounds the 0–1 loss, to ensure that the paid penalty is at least as large as
the 0–1 loss. The change of the loss-function allows solving a simpler optimization
problem and we can concentrate on other tasks, as defining nonlinear classifiers or
obtaining the relevant features for classification.

We propose to upper bound (1.18), using Jensen’s inequality over the loss-
function, to build the CGM optimization functional:

min
w

T∑
t=1

{
1
2
||wt||2 + C

N∑
n=1

L
(
w�

t φt(xn,yt)
)}

(1.19)

Interchanging the loss-function and the sum over the cliques, we obtain an upper
bound to (1.18), if the loss-function is convex. Therefore, we are penalising errors
at least as much as we did in the original formulation.

CGM function decomposes per clique, so each wt is trained independently using
the features and outputs corresponding to the t-th clique. This is a major advantage
as we do not need to keep track of what it is happening in the rest of the graph lo
learn the parameters of each clique. Furthermore the optimisation in each clique:

min
wt

1
2
||wt||2 + C

N∑
n=1

L
(
w�

t φt(xn,yt)
)

(1.20)

is equivalent to a regularised multiclass problem with q2 labels1. We can apply
any multi-classification tool to train the model in each clique without needing a
custom-made procedure for defining the parameters of the model. CGM opens up
the range of problems in which structured machine learning can be applied, as it
has a simple training procedure and can be trained for large-scale problems. For
example, if we use a standard tool as LibSVM (Lin, 1999), we could train the CGM
with up to several thousands of training samples.

To infer the label of new inputs CGMs work as CRF algorithms do. For this phase
there is no difference between both procedures and the solution provided by CGMs
cannot be read independently for each clique. To infer an output a Viterbi-like
algorithm has to be run-over the assumed graphical model to find the most likely
output sequence. Because the outputs of each clique have to agree on the labels they
assign to each node. Therefore, we cannot compute the output independently for
each clique as a given node (shared among different cliques) can present a different
labelling for each clique.

1. if each clique only contains 2 labels.

2006/06/19 14:19

12 Conditional Graphical Models

1.3.1 Support Vector Machines

In this section, we compare HM-SVMs and M3 nets with CGMs with hinge-loss.
This comparison helps us draw some useful conclusions about the validity of the
proposed algorithm and how the two approaches penalise errors in training. The
HM-SVM/M3 net solves the following constrained optimization problem:

min
w,ξn

1
2

T∑
t=1

‖wt‖2 + C
N∑

n=1

ξn (1.21)

subject to:

T∑
t=1

w�
t φt(xn,ynt) −

T∑
t=1

w�
t φt(xn,yt) ≥

T∑
t=1

Myn,yt
− ξn ∀n,∀y (1.22)

and CGM with hinge-loss solves:

min
w,ξn

T∑
t=1

{
1
2
‖wt‖2 + C

N∑
n=1

ξnt

}
(1.23)

subject to:

w�
t φt(xn,ynt) − w�

t φt(xn,yt) ≥ Mynt,yt − ξnt ∀n,∀t, ∀yt (1.24)

Both optimization functional (1.21) and (1.23) are identical with the definition of
the slacks variables being the only difference. The main difference lies in the linear
constraints that are responsible for the obtained solution for both methods.

Comparing constraints (1.24) and (1.22), we can notice the reduction in the
number of constraints and therefore the needed runtime complexity during training.
Initially it might seem that when using (1.24), we are multiplying the number
of constraints by T , the number of cliques, as it divides (1.22) into T different
constraints (one per clique). But each one of the constraints in (1.24) only needs to
distinguish between q|yt| labels in each clique instead the qL different labelling of
each sequence in (1.22). We end up having a significant reduction in the number of
constraints2 in our optimisation formulation for CGMs in (1.23)-(1.24).

As we commented in the previous paragraph the constraint in (1.22) is the sum
over all cliques of the constraint in (1.24). Thus the constraints in (1.24) is more
restrictive, because it enforces the margin constraint clique by clique instead of
over the whole label sequence. This is due to the modification of the loss-function
in (1.19), where we changed the loss in CRF-like algorithms by a convex upper
bound. This constraint allows us to be more restrictive and more precise, as we
only penalise the cliques that are in error. Let us illustrate these properties with
two examples.

2. For a tree-like structure the number of constraints drop from NqL to NTq2.

2006/06/19 14:19

1.4 Experiments 13

Suppose a labelling y fulfills the margin requirement for the n training example,
but individually one of its cliques does not. In the original M3 net formulation,
this labelling is not penalised and the discriminative information about the clique,
which does not fulfil the margin requirement, is lost. But the formulation in (1.23)-
(1.24) enforces the margin per clique, so it uses the information in the erroneously
classified clique to build the classifier, incorporating its discriminative information
into wt.

The complementary example is also relevant. Suppose a labelling y does not fulfil
the margin requirement because one of its cliques is completely flawed, although
all the other cliques are correctly classified with enough margin. In M3 network
and the other CRF methods, this flawed clique forces the whole sequence to be a
support vector and it is incorporated into the construction of the classifier of every
clique, although it only presents discriminative information for one clique. In the
CGM solution, this flawed clique is considered an outlier and is incorporated into
the solution of the classifier in that clique. But it does not affect the classifiers in
the remaining cliques and it does not force the whole sequence to be a support
vector in every clique.

In a way we can see the formulation per clique to be more restrictive than the
formulation in (1.22), as we can learn locally in a clique from sequences that are
globally correctly classified. At the same time it is more precise, as it only needs to
learn from the cliques in which the errors occur and does not need to incorporate
the whole sequence if it does not bring discriminative information for every clique
in the graph.

To sum up, we started the motivation for the algorithm by arguing that solving
the optimization per clique would provide a huge computational cost reduction
and that we might be able to trade-off some accuracy for getting this complexity
reduction. We have finally shown that we do not only get this computational
cost reduction, but also a more sensible learning procedure that only incorporates
those cliques that bring discriminative information for the whole sequence and not
complete sequences that might only provide local discriminative information. We
believe this approach can provide higher discriminative power than the previous
proposed methods with a much simpler learning mechanism and with a significant
reduction in the computational complexity. We test these claims experimentally in
the next section.

1.4 Experiments

We test the CGM with a handwritten-word recognition task. The dataset was
collected by Kassel (1995) and contains around 6877 words of varying length (4
to 15 letters) written by 150 different subjects. Each word is divided into 16 × 8
binary images for each letter and its corresponding label. Our inputs will be a
16 × 8L binary image and its corresponding label vector will contain L elements

2006/06/19 14:19

14 Conditional Graphical Models

out of qL possibilities. This data set was preprocessed by Taskar et al. (2004) to
test the M3 network. The dataset was divided in 10 groups for cross-validation.

y
1

y
3

y
5

y
2

y
4

y
1

y
3

y
5

y
2

y
4

Graph1 Graph2

y
1

y
3

y
5

y
2

y
4

Graph3

Figure 1.2 We represent the 3 graphical models that will be used in the experiments
to test the CGM.

We test the CGM using the 3 graphical models shown in Figure 1.2. The first
graph contains no edges and in it we will be training a multi-class model for
each letter independently. The second one is a chain, in which we have pair-
wise interactions between letters, and the third takes into account three-letter
interactions. For this experiment, we will use the following feature vector:

φt(xn,ynt) = [0, . . . , ψ(xnt),0, . . .]� (1.25)

where φt(xn,ynt) contains q|yt| terms and the nonzero element is indexed by the
labelling ynt. In this feature, we only consider as inputs the images of the letters
in each clique. The kernel of φt(xn,ynt) is:

κt(xn′ ,yn′t,xn,ynt) = δ(ynt = yn′t)k(xnt,xn′t)

where we have defined k(xnt,xn′t) = ψ�(xnt)ψ(xn′t) = k(xnt,xn′t) = exp(‖xnt −
xn′t‖2/2/σ2). To solve each one of the multiclass SVM we have used the LibSVM
code Lin (1999).

We have first solved this experiment using 1 group for training and the other 9
for validation, as done in Taskar et al. (2004), and we have repeated it over the
10 different sets. We have set C = 5, Mynt,yt = 1 and σ =

√
d/16, where d is

the dimension of xnt. We have reported the letter and word probability of error in
Table 1.2.

Table 1.2 We show the mean and standard deviation for 10-fold cross-validation for the
3 graphs with 1 set for training and 9 for validation.

Graph1 Graph2 Graph3

Word 0.795±.0012 0.369±.0013 0.195±.0009

Letter 0.271±.0009 0.125±.0011 0.058±.0005

2006/06/19 14:19

1.4 Experiments 15

In Taskar et al. (2004) the authors reported an error rate of around 13% in the
letter recognition task, for the same partition of the data used in this experiment.
This result is directly comparable to the letter recognition for Graph2, as they used a
chain in their experiments. The proposed CGM can be used with higher connectivity
graphs, such as Graph3, because we can perform the training independently per
clique and the error rate is reduced by over 50%.

We have also computed the cross-validation error in the standard setting, in
which 9 groups are used for training and one for validation, to show that we can
work with larger training sets. The mean probability of error of letter and word
recognition are reported in Table 1.3. For this setting Graph3 is still better than

Table 1.3 We show the mean and standard deviation for 10-fold cross-validation for the
3 graphs with 9 set for training and 1 for validation.

Graph1 Graph2 Graph3

Word 0.528±.0037 0.133±.0015 0.128±.0019

Letter 0.126±.0009 0.031±.0003 0.027±.0004

Graph2, but there the difference is not as significant as it was for shorter training
sequences.

The performance of Graph2 and Graph3 in the above experiments were signifi-
cantly higher than those of Graph1, because they incorporate some error correcting
capabilities, as not all the transitions in the graph are allowed and the different
cliques have to agree on the predicted label in the nodes they share. But if we look
at the performance clique by clique (individual decisions), Graph1 presents a lower
error rate as its learning problem is much simpler. It only needs to distinguish be-
tween q labels, instead of q2 or q3, and the training set has the same number of
entries with lower input dimension. We propose the following feature to incorporate
the individual decisions in Graph1 with the error correcting capabilities provided
by graphs with higher connectivity among its nodes. We will train Graph2 using
the following feature vector:

φt(xn,ynt) = [0, . . . ,ψ(xnt1), . . . | 0, . . . , ψ(xnt2), . . .]
�

which has 2q2 elements, twice as many entries as the feature defined in (1.25). The
positions of ψ(xnt1) and ψ(xnt2) are indexed by ynt. The vectors xnt1 and xnt2

are, respectively, the images of the first and second letter in the tth clique.
For this feature, we can describe the weight vector as:

wt = [wt1 | wt2] = [wt11 , . . . ,wt1q2 | wt21 , . . . ,wt2q2]

In each wt1 there are q2 terms, but in the corresponding part of the feature vector,
we will only deal with the image of a letter (q different values). As the same letter
can be placed in different positions by the labelling ynt, we will clamp together the
wt1s

(and wt2s
) that multiply the image of the same letter, so we can have a higher

performance as each weight vector will be trained with more training examples

2006/06/19 14:19

16 Conditional Graphical Models

(all the letters in each node). But the feature vector will still keep the information
about which couple of letters are allowed in each clique. The kernel for this feature
will be: κt(xn′ ,yn′t,xn,ynt) = δ(ynt = yn′t)[k(xnt1 ,xn′t1) + k(xnt2 ,xn′t2)], where
k(·, ·) is defined as above.

We have computed the cross-validation error for this feature using the previously
defined sets. When a single set is used for training the mean letter recognition
error and standard deviation are: 0.097±.0006 (for words: 0.327±.0012). And when
we used 9 sets for training and one for validation, the performance results are:
0.025±.0003 (for words: 0.120±.0019). We can see that these results provide lower
error rates than the ones reported in Tables 1.2 and 1.3 for Graph1 and Graph2,
because we incorporate the error correcting capabilities of Graph2 and the more
precise performance in each individual decision. This feature vector can be extended
to the Graph3.

1.5 Conclusions and further work

In this paper, we have presented a unified framework that covers the most relevant
proposals to solve the multi-label classification problem using graphical models
to reduce the exponentially growing complexity with the label length. We have
presented a compact notation that can be used to represent Conditional Random
Fields (Lafferty et al., 2001), Bayesian CRFs (Qi et al., 2005), Kernel CRFs (Altun
et al., 2004a,b; Lafferty et al., 2004) and Maximum Margin Markov networks (Altun
et al., 2003; Taskar et al., 2004). This notation is simpler than most of the notation
used in those papers, and allows to compare these models and to understand their
similar properties. There is a different approach Weston et al. (2002), which uses
a kernel over the labels to deal with the complexity of the addressed problem.
Although, we have not studied the connection of our framework with this method,
as we end up using a kernel over the inputs and labels (1.10), we believe that
connection can be made and it is left as further work.

In the second part of the paper, based on the presented framework, we have
proposed a new learning algorithm to solve the multi-label problem. The CGM can
be solved independently per clique, which is its main difference with the algorithms
proposed in the literature. Therefore the CGM is much simpler to solve, so we can
use much larger training datasets and it can be applied over more complex graphs.
We have also argued, and shown experimentally, that this training per clique is more
precise than the training of the sequences as a whole. Because the classification of a
new example is based on the individual decisions of each clique (then combine with
the graph to ensure the solution is consistent), so if we use all the discriminative
information to train each clique we will be able to provide much more accurate
answer, when we predict the labels of new samples. We have left as further work
the connection between the Conditional Graphical Models and the probabilistic
approaches for solving the multi-label problem.

2006/06/19 14:19

1.5 Conclusions and further work 17

Acknowledgements

Fernando Pérez-Cruz is Supported by the Spanish Ministry of Education Postdoc-
toral fellowship EX2004-0698.

2006/06/19 14:19

18 Conditional Graphical Models

2006/06/19 14:19

References

Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markov support vector
machines. In International Conference on Machine Learning, Washington, USA,
2003.

Y. Altun, A. Smola, and T. Hofmann. Exponential families for conditional random
fields. In Conference on Uncertainty in Artificial Intelligence, Banff, Canada,
2004a.

Yasemin Altun, Thomas Hofmann, and Alexander J. Smola. Gaussian process clas-
sification for segmenting and annotating sequences. In International Conference
on Machine Learning, Banff, Canada, 2004b.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT,
pages 144–152, Pittsburgh, PA, 1992. ACM Press. URL http://www.clopinet.

com/isabelle/Papers/colt92.ps.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass
kernelbased vector machines. Journal of Machine Learning Research, 2(5):265–
292, 2001.

Thomas G. Dietterich. Machine learning for sequential data: A review. In T. Caelli,
editor, In Structural, Syntactic, and Statistical Pattern Recognition; Lecture
Notes in Computer Science, volume 2396, pages 15–30. Springer-Verlag, 2002.

R. Kassel. A comparison of Approaches to On-line Handwritten Character Recog-
nition. PhD thesis, MIT Spoken Language Systems Group, 1995.

G. S. Kimeldorf and G. Wahba. Some results in tchebycheffian spline functions.
Journal of Mathematical Analysis and Applications, 33:82–95, 1971.

S. Kumar and M. Hebert. Discriminative fields for modeling spatial dependencies
in natural images. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in
Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In International Conference
on Machine Learning, Massachusetts, USA, 2001.

J. Lafferty, X. Zhu, and Y. Liu. Kernel conditional random fields: Representation
and clique selection. In International Conference on Machine Learning, Banff,
Canada, 2004.

2006/06/19 14:19

20 References

Chih-Jen Lin. Formulations of support vector machines: a note from an optimization
point of view. Technical report, National Taiwan University, Dept. of Computer
Science, 1999. http://www.csie.ntu.edu.tw/˜cjlin/.

Thomas P. Minka and John Lafferty. Expectation propagation for the generative
aspect model. In Conference on Uncertainty in Artificial Intelligence, 2002.

Yuan Qi, Martin Szummer, and Thomas P. Minka. Bayesian conditional random
fields. In Proceedings of the Tenth International Workshop on Artificial Intelli-
gence and Statistics, 2005.

B. Schölkopf and A. Smola. Learning with kernels. M.I.T. Press, 2001.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In S. Thrun,
L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing
Systems 16. MIT Press, Cambridge, MA, 2004.

Hanna Wallach. Efficient training of conditional random fields. Master’s thesis,
Division of Informatics, University of Edinburgh, 2002.

J. Weston and C. Watkins. Multi-class support vector machines. Technical Report
CSD-TR-98-04, Department of Computer Science, Royal Holloway, University
of London, Egham, UK, 1998. URL http://www.dcs.rhbnc.ac.uk/research/

compint/areas/comp_learn/sv/pub/report98-04.ps.

J. Weston, O. Chapelle, A Elisseeff, B. Schölkopf, and V. Vapnik. Kernel depen-
dency estimation. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances
in Neural Information Processing Systems 15. MIT Press, Cambridge, MA, 2002.

