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Abstract

Bayesian model averaging linearly mixes the probabilistic predictions of mul-
tiple models, each weighted by its posterior probability. This is the coherent
Bayesian way of combining multiple modelsonly under very restrictive assump-
tions, which we outline. We explore a general framework for Bayesian model
combination (which differs from modelaveraging) in the context of classification.
This framework explicitly models the relationship between each model’s output
and the unknown true label. The framework does not require that the models be
probabilistic (they can even be human assessors), that they share prior information
or receive the same training data, or that they be independent in their errors. Fi-
nally, the Bayesian combiner does not need to believe any of the models is in fact
correct. We test several variants of this classifier combination procedure starting
from a classic statistical model proposed by [1] and using MCMC to add more
complex but important features to the model. Comparisons on several datasets to
simpler methods like majority voting show that the Bayesian methods not only per-
form well but result in interpretable diagnostics on the data points and the models.

1 Introduction

There are many methods available for classification. When faced with a new problem,
where one has little prior knowledge, it is tempting to try many different classifiers in
the hope that combining their predictions would give good performance. This had lead
to the proliferation of classifier combination, a.k.a. ensemble learning, methods [3].

The Bayesian model averaging (BMA) framework appears to be ideally suited to
combining the outputs of multiple classifiers. However, this is misleading. Before we
discuss Bayesian classifier combination (BCC), the topic of this paper, let us review
BMA and outline why it is not the right framework for combining classifiers.1

∗The work was done while H-C.K. was a visiting student from POSTECH, South Korea.
1We have focused on classification, although many of the ideas carry forth to other modelling problems;

we return to this in the discussion.
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Assume there areK different classifiers. Bayesian model averaging starts with a
prior over the classifiers,p(k) for thekth classifier. This is meant to capture the (prior)
belief in each classifier. Then we observe some dataD, and we compute the marginal
likelihood or model evidencep(D|k) for eachk (which can involve integrating out the
parameters of the classifier). Using Bayes rule we compute the posteriorp(k|D) =
p(k)p(D|k)/p(D) and we use these posteriors to weight the classifiers predictions:

p(ti|xi, D) =
K∑

k=1

p(ti, k|xi, D) =
K∑

k=1

p(ti|xi, k, D)p(k|D) (1)

wherexi denotes a new input data point andti the predicted class label associated
with data pointi. The key element of this well-known procedure is that the predictive
distribution of each classifier is linearly weighted by its posterior probability.

While this approach is appealing and well-motivated from a Bayesian framework,
it suffers from three important limitations: 1) It is only valid if we believe that theK
classifiers capture mutually exclusive and exhaustive possibilities about how the data
was generated. In fact, we might not believe at all thatanyof theK classifiers reflects
the true data generation. However, we may still want to be able to combine them to
form a prediction. 2) For many classification methods available in the machine learn-
ing community, it is not possible to compute, or even define, the marginal likelihood
(for example, C4.5, kNN, etc.). Moreover, one should in principle be able to include
human experts into any classifier combination framework. The human expert would
not naturally define a likelihood function from which marginal likelihoods can be com-
puted. 3) Not all classifiers may have observed the same data or started with the same
prior assumptions. The Bayesian framework described above would have difficulties
dealing with such cases, since the posterior is computed by conditioning on the same
data set.

Here we propose an approach to Bayesian classifier combination which does not
assume that any of the classifiers is the true one. Moreover, it does not require that the
classifiers be probabilistic; they can even be human experts. Finally, the classifiers can
embody widely different prior assumptions about the data, and have observed different
data sets.

There are well-known techniques for classifier combination, so called ensemble
methods([3, 9]).2, such as bagging, boosting, and dagging. These methods try to make
individual classifiers different by training them with different training sets or weighting
data points differently. This is because it is important to make the individual classifiers
as independent as possible for ensemble methods to work well. In this work, we do not
restrict how the individual classifiers are trained, but instead assume they are given and
fixed.

Another powerful and general method, called stacked generalisation can be used
to combine lower-level models [10]. Stacking methods for classifier combination use
another classifier which has as inputs both the original inputs and the output of the
individual classifiers. Stacking can be combined with bagging and dagging [9]. In

2Note that the term “ensemble learning” has also been used in the Bayesian literature in a different context
to refer to approximate Bayesian model averaging using variational methods.
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this work, we do not use the input vectors and we explicitly model the errors and
correlations between individual classifiers. Therefore, our work deals with a different
problem from those which are usually handled using ensemble and stacking methods. It
should be possible to extend our method to encompass a fully-Bayesian generalisation
of stacking, but we leave this for future work.

The method we propose for Bayesian classifier combination in a machine learning
context is directly derived from the method proposed in [5] for modelling disagreement
between human assessors, which in turn is an extension of [2]. This method assumes
individual classifiers are independent, which is often unrealistic and results in limited
performance. We therefore start with these models and propose three extensions for
modelling the correlations between individual classifiers. The literature of combining
probability distributions is quite extensive, and reviews of other methods including
linear, logarithmic and multivariate normal opinion pools, can be found in [4] and [6].

2 Independent Models for Bayesian Classifier Combi-
nation

2.1 Probabilistic Model for Classifier Combination

We describe the method proposed in [2] with the view of applying it to classifier combi-
nation. For theith data point, we assume the true labelti is generated by a multinomial
distribution with parametersp: p(ti = j|p) = pj . Then, we assume that the output

c
(k)
i of classifierk is generated by a multinomial distribution with parametersπ

(k)
j :

p(c(k)
i |ti = j) = π

(k)

j,c
(k)
i

. For simplicity we assume that the classifiers havediscrete

outputs, i.e.c(k)
i ∈ {1, . . . , J} whereJ is the number of classes. The extension to indi-

vidual classifiers which output probability distributions is obviously important and will
be explored in the future. The matrixπ(k) captures theconfusion matrixfor classifier
k.

If we assume that the classifier outputs are independent given the true labelti, we
getp(ci, ti|p,π) = pti

∏K
k=1 π

(k)

ti,c
(k)
i

wherec denotes the vector of class labels over

all classifiers. If we further assume that labels across data points are independent and
identically distributed, we obtain the likelihood

p(c, t|p,π) =
I∏

i=1

{
pti

K∏
k=1

π
(k)

ti,c
(k)
i

}
. (2)

Usually,c(k)
i is known and the other variables and parameters are unknown. By con-

sideringti as hidden variables, we can apply the EM algorithm to find ML estimates
for p andπ. This is the approach taken in [2] and we also provide further details in
a longer version of this paper [7]. It should be noted that not only does this perform
classifier combination, but it provides estimates of interpretable quantities such as the
confusion matrices.
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2.2 Independent BCC Model

A Bayesian treatment of the probabilistic model in Section 2.1 was recently proposed
in [5] for combining multiple human raters. They also considered multiple ratings (i.e.
c
(k)
i1 . . . c

(k)
iM ) for the same input vector by the same raters. Since artificial classifiers

are not usually variable in how they respond to the same input, we do not consider
replicates in the ratings.

The Bayesian model needs priors on the parameters; we used hierarchical conjugate
priors. A row of the confusion matrixπ(k)

j = [π(k)
j,1 , π

(k)
j,2 , · · · , π

(k)
j,J ], is modeled to have

a Dirichlet distribution with hyperparametersα
(k)
j = [α(k)

j,1 , α
(k)
j,2 , · · · , α

(k)
j,J ]. The prior

distribution ofα(k)
j,l is modeled by an exponential distribution with parametersλj,l. All

rows are assumed independent within and across classifiers; even so it is easy to bias
the prior to prefer diagonal confusion matrices. (Detailed expressions are provided in
the longer version of the paper [7].) The prior for the class proportionsp is also set to
be Dirichlet, with hyperparametersν.

Based on the above prior, we can get the posterior for all random variables given
the observed class labels. Since we assumed independence among classifiers (as in
[5]), the posterior density is

p(p,π, t,α|c) ∝
I∏

i=1

{
pti

K∏
k=1

π
ti,c

(k)
i

}
p(p|ν)p(π|α)p(α|λ). (3)

We call this model the Independent Bayesian Classifier Combination (IBCC) model.
The graphical model for IBCC is shown in Fig 1.

Inference for the unknown random vari-
λ α(k)

π(k)

ν

(k)

p

t i

i

k=1,2,...,K

i=1,2,...,I

 c

Figure 1: The directed graphical model for
IBCC, with plates over classifiersK and
data pointsI.

ablesp, π, t, and α can be done via
Gibbs sampling. Since the conditional
densities onp andπ

(k)
j are both Dirich-

let, they can be sampled easily; also,ti
can be sampled since it is a multinomial
distribution. However, the exact condi-
tionals forα(k)

j,l are not easily obtained,
so we use rejection sampling.

Hyperparametersν are set so that class
are roughly balanced a priori;λ is set to
have bigger values on the diagonal than
the off-diagonals. This encodes the prior
that classifier outputs are better than ran-
dom.
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3 Dependent Models for Bayesian Classifier Combina-
tion

One of the problems with the above model is the assumption that classifiers are inde-
pendent, which is often not true in a real situation. Consider several poor classifiers
that make highly correlated mistakes and one good classifier. Assuming independence
results in performance biased toward majority voting, whereas accounting for the de-
pendence would discount the poor classifiers by an amount related to their correlation.
Modelling dependence therefore appears to be an essential element of Bayesian classi-
fier combination.

We propose three models to deal with correlation among classifier outputs. First,
we insert a new hidden variable representing the difficulty of each data point—marginalising
this out results in a weakly dependent model. Second, we explicitly model pairwise de-
pendence between classifiers using a Markov Network. Third, we combine the above
two ideas.

3.1 Enhanced BCC Model

We enhance the IBCC model by using different confusion matrices according to dif-
ficulty of each data point for classification. Easy data points are classified using a
confusion matrixE which is fixed to have diagonal elements1 − ε and off-diagonal
elementsε/(J − 1) (we’ve also tried extensions whereE is learned). For hard data
points, each classifier uses its own confusion matrix,π(k), as before. Whether a data
point is “easy” or “hard” is controlled by independent Bernoulli latent variablessi (=1,
if hard) with meandi, which is given a Beta prior. The likelihood term is as follows.

p(c, t|p,π, s) =
I∏

i=1

{
pti(

K∏
k=1

π
(k)

ti,c
(k)
i

)si(
K∏

k=1

E
ti,c

(k)
i

)(1−si)

}
(4)

We call this model the Enhanced Bayesian Classifier Combination (EBCC) model. The
graphical model for the EBCC model in shown in Fig 2. Inference is again performed
using Gibbs and rejection sampling.

β d i s =1i β d i

k=1,2,...,K

π(k)

λ α(k)

(k)

t i

ν

p

i

E

(k)

ν

p

i

t i

k=1,2,...,K

is =0

i ii s.t. s =0i s.t. s =1
 c  c

Figure 2: The graphical
model for the EBCC model.
Note that we have adiffer-
ent graphical model condi-
tional on the setting ofsi

for each point; the left graph
is for “hard” data and the
right graph is for “easy” data.
(The usual DAG formalism
does not represent such de-
pendence of structure on vari-
able setting elegantly.)
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3.2 Dependent BCC Model

To model correlations between classifiers more directly, we extend the IBCC model
with a Markov network. The part related to confusion matrices is replaced with the
following Markov network.

p(ci|V,W, ti) =
1

Z(V,W, ti)
exp{

∑
j<k

Wj,kδ(c(j)
i , c

(k)
i ) +

∑
k

V
(k)

ti,c
(k)
i

} (5)

In this Markov network,V relatesti with c
(k)
i , andW relatesc(j)

i with c
(k)
i , which

models correlations between classifiers;Z is a partition function (normaliser). The
same priorsp(t|p)p(p|ν) as in IBCC are used. As priors for elements ofV andW,
we use zero-mean independent Gaussians with varianceσ2

v andσ2
w. Sampling for most

of the parameters of this model is again straightforward. However, sampling fromV,
W is more subtle due to the partition function, so we implemented it using a Metropolis
sampling method. We call this model the Dependent Bayesian Classifier Combination
(DBCC) model. Since it’s a mix of directed and undirected conditional independence
relations it is most simply depicted as a factor graph (Fig 3).

ν

p

t i

W 1,j W 1,K W j,K

i=1,2,...,I

V(1) V V

i

(1)

(j) (K)

(j) (K) c  c  c ii

Figure 3: The factor graph for the DBCC model. Each
dot represents a factor in the joint probability and con-
nects variables involved in that factor.

3.3 Enhanced Dependent BCC model

The Enhanced Dependence BCC model (EDBCC) combines the easy/hard latent vari-
able for the EBCC with the explicit model of correlation between classifiers of the
DBCC. For easy data, the conditional probability of each class is given by:

peasy(c(:)
i |U, ti) =

1
Ze(U, ti)

exp{
∑

k

U
ti,c

(k)
i
} (6)

U relatesti with c
(k)
i (playing a role analogous to theE matrix in EBCC). For easy

data points, it is assumed that classifiers are independent, for hard data it is assumed to
be as in DBCC. The factor graph for the EDBCC model is shown in (Fig 4).
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ν

p

t i

ν

p

t id i

β

s =1i

d i

β

W 1,j W 1,K W j,K

(1)V V V
(j) (K)

(j)

i

(1)
i

(K)

U

(j)(1) (K)
is =0

i s.t. s =1

i

i

ii s.t. s =0

 c  c  ci i

 c  c  ci

Figure 4: The factor graph
for the EDBCC model.
Again we have a different
graph conditional on the
setting ofsi. The left half
shows the factor graph for
hard data points (si = 1)
and the right half for easy
data points.

4 Experimental Results

We compared the Bayesian classifier combination methods on several data sets and
using different component classifiers. We used Satellite and DNA data sets from the
Statlog project([8]) and the UCI digit data set ([1])3. Our goal was not to obtain the
best classifier performance—for this we would have paid very careful attention to the
component classifiers and chosen sophisticated models suited to the properties of each
data set—rather our goal was to compare the usefulness of different BCC methods
even when component classifiers are poor, correlated or trained on partial data. We
compared the four variants of the BCC idea outlined above to two other methods:
selecting the best classifier using validation data4 and majority voting. In all BCC
models the validation data was used as knownti to “ground” the estimates of model
parameters. In theory this grounding is not necessary: we can treat the labels in the
observed data set as simply another classifier’s outputs (perhaps the human who hand-
labelled the data) and assume thatno true labelsti are ever observed. This variant did
not seem to work as well in initial experiments but needs to be explored further. BCC
results are based on comparing the posterior mode ofti for data points in the test set to
the true observed label.

We did two sets of experiments. In Experiment 1, we combined the outputs of the
same type of classifier trained on disjoint training sets.5 In Experiment 2, we trained
several different classifiers on the (same) whole training set.6 For all BCC models ran

3The DNA data set has a training set of 2000, a test set of 1186 with 3 classes and 50 variables. Satellite
has a training set of 4435, a test set of 2000 with 6 classes and 36 variables. UCI digit data set has a training
set of 3823, a test set of 1797, 10 classes and 64 variables.

4500, 1000, 797 data points were selected from the orignal test set as a validation set for DNA data set,
Satellite data set, UCI digit data set, respectively. The rest of the original test set was used to evaluate the
performance.

5For DNA data set, we had 5 disjoint training sets and trained C4.5 for each of them. For Satellite data
set, we had 4 disjoint training sets and trained C4.5 for each of them. For UCI digit data set, we had 3 disjoint
training sets and trained SVM with 2nd-order polynomial kernel andC = 100.0.

6For DNA data set, we trained 5 classifiers: C4.5 (C1), SVM with 2nd-order polynomial kernel andC =
100.0 (C2), 1-Nearest Neighbor (C3), logistic regression (C4), and Fisher discriminant (C5). For Satellite
data set, we trained 4 classifiers: C4.5 (C1), SVM with 2nd-order polynomial kernel andC = 100.0 (C2),
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Experiment 1 Experiment 2
Data set Satellite UCI digit DNA Satellite UCI digit DNA

C1 0.1920 0.0320 0.1210 0.1420 0.0460 0.0714
C2 0.1820 0.0320 0.1458 0.1450 0.0250 0.1137
C3 0.1910 0.0390 0.1283 0.1760 0.0290 0.2551
C4 0.1860 N/A 0.1254 0.2560 N/A 0.1020
C5 N/A N/A 0.1050 N/A N/A 0.0598
Val 0.1910 0.0390 0.1458 0.1450 0.0250 0.0598
MV 0.1505 0.0263 0.0780 0.1460 0.0250 0.0415

IBCC 0.1510 0.0260 0.0758 0.1240 0.0250 0.0408
EBCC 0.1490 0.0260 0.0758 0.1250 0.0250 0.0408
DBCC 0.1520 0.0240 0.0904 0.1300 0.0230 0.0423

EDBCC 0.1410 0.0290 0.0889 0.1280 0.0230 0.0466

Table 1: The performances of individual classifiers and various combination schemes
in the case of using the same classifier with the disjoint training sets (Experiment 1)
and different classifiers with the same whole training set (Experiment 2)

the MCMC sampler for at least 50000 samples, averaging every 100th and discarding
the first 10000. The dependent models (DBCC and EDBCC) were generally slower
to converge. Details of the sampling and hyperparameter settings are provided in the
longer version of the paper.

Table 1 shows the performance of each classifier and BCC combination strategy
for both experiments. “Val” and “MV” denote selecting the classifier with smallest
validation set errors, and majority voting, respectively. IBCC and EBCC have simi-
lar performance and EBCC model is always better than or as good as majority voting.
Model selection by validation set is quite bad especially in Experiment 1. BCC meth-
ods are always better than or as good as model selection by validation. The dependent
factor graph models (DBCC and EDBCC) do not always work well. Especially on the
DNA data set, they did not seem to learn reasonable parameters, perhaps because the
DNA data set is relatively small and has biased class distribution. For Satellite and
UCI digits, it learned resonable parameters and showed comparable performance to
other BCC methods.

We examined theV andW matrices inferred by the dependent methods and the
difficulty assigned to each point by the enhanced methods. These have intuitive in-
terpretations and may provide useful diagnostics, one of the strengths of the BCC ap-
proach. Due to space limitations we do not display these matrices or discuss them in
this paper; see [7].

logistic regression (C3), and Fisher discriminant (C4). For UCI digits, we trained 3 classifiers: SVM with
linear kernel (C1), SVM with 2nd-order polynomial kernel (C2), and SVM with Gaussian kernel (σ = 0.01)
(C3), where all SVMs hasC = 100.0.
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5 Discussion

We have shown several approaches to classifier combination which explicitly model
the relation between true labels and classifier outputs. They worked reasonably well
and some of them were always better than or as good as majority voting or validation
selection. The parameters in BCC models can be interpreted resonably and give useful
information such as confusion matrices, correlations between classifiers, and difficulty
of data points.

We emphasised that Bayesian classifier combination is not the same as Bayesian
model averaging. Our approach is closely related tosupra-Bayesianmethods for aggre-
gating opinions [4, 6]. Other models and extensions are certainly possible; we outline
some here.

Clearly the model presented here needs to be generalised to combine classifiers that
output probability distributions. In this case, e.g. instead of a matrixπ(k) we need a
model that relatesti to class probability distributions. Conditional Dirichlet distribu-
tions seem a natural choice for this. Similarly, there is no reason to restrict this ap-
proach to combining classifiers. Combining different regressions is another important
problem which could be handled by an appropriate choice of the density of regressor
outputs given true target.

A Bayesian generalisation of “stacking” methods is another important avenue for
research. The combiner, in our setup, does not see the input data. If the combiner does
see the input and the outputs of all the other classifiers, then it should model the full
relation between true labels, inputs, and other classifier outputs.

One practical limitation of the DBCC approach is that the computation time for the
exact partition function of the Markov network grows exponentially with the number
of classifiers. Efficient approximations to the partition function, many of which have
been recently developed, could be used here. Such approximate inference could also
be a tractable replacements for all the MCMC computations.
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