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Abstract.
The adaptability of the motor system to both visual and force pertur-
bation has been clearly demonstrated by experiments on adaptation to
prismatic shifts of the visual scene or by adaptation to force-fields
produced by a robotic manipulandum. While these experiments demon-
strated the remarkable adaptability of the motor system, in the real
world the adaptive system has to take account of the inherent uncertainty
of the environment it interacts with. Two sources of uncertainty have to
be considered: the uncertainty associated with sensory feedback and the
uncertainty arising from the fact that the environment can change. These
different forms of uncertainty give rise to constraints on how sensory
and contextual information must be integrated over time in order to op-
timally update an adaptive control system. We treat motor adaptation as .
a system identification problem of inferring an internal model of the
environment from noisy observations, using the example of a simple
linear system and extend this idea to include contextual information.
Bayesian theory provides a framework in which such uncertain sources
of information can be integrated optimally. We briefly discuss experi-
mental results for the role of contextual information on adaptation to
dynamic loads and review a number of recent experiments that explicitly
address the issue of adaptation to noisy and time-varying environments.
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INTRODUCTION

On a typical day, one could ride a bike to work, walk up the stairs to
the office, write down a quick note, type on a keyboard, use a computer
mouse and maybe playa game of squash in the evening. What all these
activities have in common is that they can be performed without any
conscious awareness of the complicated underlying problem of produc-
ing the correct motor output given sensory information and a represen-
tation of the goal of the movements. They all involve different rela-
tionships between sensory inputs and motor outputs, or sensory-motor
mappings, related to the different objects and environments we interact
with. To complicate the matter further, these mappings are not fixed but
can vary in time either predictably or in a random fashion: during a
game of squash, muscle properties change due to fatigue; or we might
have to deal with gusty side winds which will certainly introduce a ran-
dom component in our bike ride home. This poses the dual question of
how the motor system can adapt our behavior to a seemingly infinite
number of dynamical environments and how we deal with the inherently
noisy and time-varying characteristics of our world.

Since von Helmholtz observed that humans could adapt to displace-
ments of the visual scene induced by wearing spectacles fitted with a set
of wedge prisms (Helmholtz, 1925), the adaptability of the human motor
system has fascinated researchers. A great number of experiments have
been performed using the prism paradigm (see Welch, 1986, for a
review) and more recently using computer aided set-ups (Ghahramani,
Wolpert, & Jordan, 1996; Vetter & Wolpert, 2000b), testing the adap-
tability of the visuo-motor map. The adaptability of the visuo-motor map
is thought to be crucial to keep the external world aligned with internal
coordinate frames (Bedford, 1999), and probably explains the ease with
which we can perform tasks like using a computer mouse on our desk to
control a cursor on the screen.

While visuomotor adaptation to visual rearrangements has been stud-
ied for over a century, most of the above examples of possible activities
during a typical day illustrate the importance of adaptation to environ-
ments or objects with different dynamical properties (e.g., inertia). This
form of sensori-motor adaptation has begun to be explored more re-
cently using programmable robotic manipulandi to perturb the hand's
trajectory while subjects reached to targets displayed Qn a computer
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screen. Many studies have investigated how such a novel dynamic
system is learned using position, velocity and acceleration dependent
perturbations (Flash & Gurevich, 1997; Sainburg, Ghez, & Kalakanis,
1999; Shadmehr & Mussa-Ivaldi, 1994). This adaptation has been
explained by assuming that the motor system forms an internal model of
the perturbation to compensate for the perturbations in a predictive,
feed-forward fashion. More recently this picture has been complemented
by demonstrating the important role of rapid feedback loops for adapta-
tion to dynamic loads (Bhushan & Shadmehr, 1999; Wang, Dordevic, &
Shadmehr, 2001).

Given that we interact with an extremely large number of different
and, usually, noisy and time-varying dynamical environments, how can
we learn, store and recall internal models for numerous dynamic
situations? Some studies have investigated the role of time (Conditt &
Mussa-Ivaldi, 1999) and of contextual cues (Gandolfo, Mussa-Ivaldi, &
Bizzi, 1996) in the acquisition of internal models for multiple dynamic
situations, but adaptation to non-static, time-varying environments has
only been studied recently (Korenberg & Ghahramani, 2002; Scheidt,
Dingwell, & Mussa-Ivaldi, 2001; Takahashi, Scheidt, & Reinkens-
meyer, 2001) and lacks a theoretical framework.

In this work we will develop a probabilistically consistent framework
that combines estimation of time varying parameters, reflecting changes
in the properties of the environment, with the influence of contextualcues. The problem is approached by interpreting motor learning as a .

system identification problem, using information about past experience,
as well as the context, to infer a controller that results in the desired per-
formance. We will review results from dynamic perturbation studies that
investigate the role of contextual from a Bayesian perspective and inter-
pret the results of studies that investigate adaptation to noisy, time-
varying environments in our framework.

BAYESIAN INFERENCE FOR MOTOR ADAPT A TION

Motor adaptation and the delta rule

Abstractly, the role of the motor system is to produce motor com-
mands that achieve a given goal. In this 'view, the motor system is de-
scribed by a function, or internal model, F that maps sensory feedback s
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to an output 0 (e.g., a motor command) such that as a result the goal is

achieved,
°t = F(w,sJ, (1)

where the subscripted index t indicates that both 0 and s are a function
of time. 0 is the output of the adaptive controller, for example a force
compensating for an external perturbation, and s is any sensory informa-
tion or history thereof, efference copy or state of mind relevant to pro-
ducing o. If we assume that the desired output o' is known, the goal of
adaptation can be reduced to minimizing a measure E of the difference
between desired and actual output of the system by tuning the param-
eters w. Often the square error is a convenient choice for E:

E = ! L (Ot.~ or>2 (2)
2 t

E can then be minimized by taking small steps in the direction of de-
creasing E using gradient descent, which results in the well-known delta
rule for updating w:

aE . aFwnew = Wold - 7] dW = Wold - 7] . (Ot - or> . dW (3)

In the remainder of this paper we will assume that F is scalar and
linear in w; in particular we chose:

°t=w'St (4)

This emphasizes the qualitative conclusions we would like to point
out and we will mention the extension to the general n-dimensional and
non-linear case in the discussion. Although this is an extremely sim-
plified model of adaptation, it can capture the basic traits of simple
adaptation experiments, for example, state based adaptation to a viscous
force field that depends on the hand's velocity (Thoroughman &
Shadmehr, 2000). In this example o' corresponds to the force required
to compensate for the force field, 0 is the actual force output of an adap-
tive controller implemented by the motor system and the relevant sen-
sory variable s corresponds to the velocity of the hand. The assumptions
of linearity lead to the simple update rule:

wnew = Wold + 7] . (Ot*- or> . s t (5)

This form of the delta rule makes intuitive sense for changing the
parameters W of the adaptive system, since it correlates the sensory input
with the resulting error in the output. This gives it a biologically plau-
sible interpretation as Hebbian learning between sensory neurons and
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neurons encoding an error signal. The learning rate 17 in this description
is a free parameter that has to be set by hand, which is fine as long as
we are only interested in reproducing a certain experimentally found
adaptive behavior. There are however some conceptual issues with this
approach: First the learning rate 17 has the wrong units for a learning
rate, which in our definition of the update rule should be dimensionless;
instead 17 has to be in units of the squared inverse of the units of s for
Eq. (5) to be dimensionally consistent. Since 17 represents a parameter
controlling neural plasticity, it is awkward for it to depend on details of
how the peripheral signals are represented (in particular their magni-
tude). Second, when adapting to anon-stationary, time varying environ-
ment, there is a principled constraint on how to set 17. Both these issues
will be addresses in the next two sections.

Motor adaptation and system identification

In the previous section we discussed motor learning from a perspec-
tive of function approximation. The problem of inconsistent dimensions
of the training signal is due to the choice of gradient descent as an
optimization technique and there are alternative optimization methods,
such as Newton's rule, which also have a nice biologically plausible and
intuitive interpretation (Kawato, Furukawa, & Suzuki, 1987). On the
other hand, the second problem of how to set the learning rate 17 in a
time-varying environment is not addressed in the function approximation
framework. To address this question, we will rephrase the motor learn-
ing problem in terms of system identification, meaning that we will look
at the motor learner as a dynamical system described by an internal state
variable (the adaptive coefficients w). In system identification, a model
is identified by feeding a signal (e.g., white noise) to the system and
observing the output. To apply this idea to motor learning, we assume
that the adaptive system models the environment (in our sImple example
with a linear system) by identifying the state w that would result in the
desired behavior, given the assumed model. In this view adaptation
consists in inferring (identifying) an estimate w of the "true" coefficients
w that would on average result in the desired output Ot.. Given the
simple output function in Eq. (4), and allowing for the fact that control
signals are corrupted by noise (assumed to be Gaussian) the underlying
model is:
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°t' = Wt' St + 4; 4 - N(O,o-;) (6)

where 4 - N (0,0-;) means that the noise 4 is Gaussian distributed
with mean 0 and variance 0-;. The desired output °t' is either available
internally as a desired trajectory or directly from sensory input (i.e., the
sensed external force which needs to be compensated), as is the sensory
feedback St. We can therefore rewrite Eq. (6) in a more general form by
defining y = °t' / Sf:

Yt = Wt + 4; 4 - N (O,ay 1 (7)

We can see that in this form Y is simply an observation of the state of the
environment, corrupted by Gaussian noise. Although we started with a
relationship between desired output and a model of the environment, Eq.
(7) is a general observation model, capturing the fact that the motor
system receives noisy sensory information about the environment.

Since we are interested in analyzing the more general case of a time-
varying environment, we need to capture how the state of the environ-
ment W evolves with time. We again chose a very simple model assum-
ing that the state of the environment drifts randomly (modeled by a
random walk with Gaussian input noise). Although we choose this very
simple model for simplicity, constantly drifting or decaying dynamics
are equally easy to implement within the linear framework.

Wt+ 1 = Wt + Xt; Xt - N (0, aw2) (8)

where aw2, the variance characterizing the random walk, models how
fast the environment changes. A small value of aw2 means that only
small changes are likely to occur from one time step to the next and as a
result W will drift slowly over time, while an environment characterized
by a large aw2 varies erratically from one time step to the next.

If the sensory observations would be noise free (i.e., £5 = 0 in Eq.
(7», then inferring W would be trivial, since W = y. However, in the
presence of noise it becomes necessary to average sensory feedback y in
order to obtain a reliable estimate of w. This can be done online as
sensory information arrives:

wI = WI-1 +K.(YI -WI-I) (9)

where K is a dimensionless learning rate setting the effective number of
observations being used in the averaging. The first observation about
Eq. (9) is that unlike the delta rule, this update equation is dimensionally
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correct, and corresponds in fact to stochastic online version of Newton's
method for optimizing w given the model of Eq. (7).

Setting K for inferring the state of a time-varying environment from
noisy sensory feedback involves a trade-off between the amount of noise
in the estimate, and the ability to track the changes in the environment.
Setting K to a small value will lead to good noise-rejection, as each
individual observation contributes only very little to the estimate, so that
the estimator is effectively averaging over many observations (or equi-
valently a long time scale). On the downside, since for small Keach
observation has little effect on the estimate, a lot of observations are
necessary to "convince" the estimator that a large change has occurred
in the environment, or in other words the long time scale of averaging
prevents the estimator from following rapid changes in the environment.
Conversely a large value of K will result in an estimator that can re-
spond to rapid changes, but will be much more variable. In summary the
best setting of K should be large enough to track the changes in the
environment, while rejecting as much noise as possible. This trade-off is

K too small K just right
... .,.. ... . . '.. ., . ' .

',' .

" -,',..',.,.:" .. ".".:..:,:::,',

K too big
... .L

time

Figure 1. The trade-off between noise rejection and responsiveness. -

When inferring a parameter w from noisy observations (dots) using online
averaging over time t (Eq. (9» a small learning rate K (top left panel) results
in an estimate (gray line) with low noise but which does not follow the
underlying "true" time course of w (black line). Conversely, if K is too large
(bottom left panel), the estimate is very noisy. There exists an optimal setting
of K (top right panel), that minimizes the estimation error by trading off noise
rejection and responsiveness.
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illustrated in Figure 1 which shows the behavior of an estimator
described by Eq. (9) for an environment which has slowly varying state
and noisy observations.

Can the intuition about this trade-off between consistency and re-
sponsiveness of the adaptive system be captured in a mathematical
frame-work? In the next section we will discuss how this question can
be addressed on a general level by considering the probability distribu-
tions over sensory feedback and the resulting estimate. For the case of a
system with linear dynamics and Gaussian noise these considerations
lead to the Kalman filter (Kalman, 1960), which implements online
averaging (Eq. (9» optimally. In addition to setting K in a principled
way by taking account of the variability of the estimate and sensory
feedback, the Kalman filter also incorporates the information from a
predictive model (Eq. (8» of the likely evolution of the state. This
results in the optimal linear estimator in the sense that it results in the
estimate with maximal posterior probability (MAP estimate), which also
minimizes the squared estimation error.

Optimal inference and the Kalman filter

The dependence relationships implied by Eq. (7) and (8) can be
compactly summarized in the graphical model shown in Figure 2. This
graph represents the internal model the motor system is assumed to have
built of the environment. The environment or object the motor system
interacts with is represented by the hidden parameter wand causes the
observed sensation y (see Eq. (7» as indicated by the direction of the
arrow. In addition the arrows between successive states w represent the
dependence of won previous time steps, given by Eq. (8).

The goal of the adaptive system is to calculate the best estimate of Wt
given all previous sensory feedback Yt...o (i.e., all instances of sensory
feedback Yt from the current time step '£ = t back to the first time step '£
= 0). To find an optimal estimate the system needs to compute the
posterior probability distribution of the state given all sensory feedback,
P(Wt I Yt...o), which can be calculated in terms of the distribution of the
estimate given previous sensory feedback P(Wt I Yt...o) (the prior over
states), and the distribution of the current sensory feedback P(yt I wr)
(the likelihood of observing sensory feedback Y given that the true state
of the environment at time t is wr) using Bayes rule (see Appendix):
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.
P(Wt I Yt...O) oc PCYt I Wt) . P(Wt I Yt-l...O) (10)

The horizontal arrows in Figure 2 show us that the current value of W
depends only on its value at the previous time step and the transition
probability P(Wt I Wt-V. The predicted distribution of W based on
previous feedback, P(Wt I Yt-l...O), can therefore be found by averaging
over the likely development of all possible values of the previous pa-
rameter Wt-l, weighted by their posterior probabilities:

P(Wt I Yt-l...O) = J P(Wt I Wt-l) . P(Wt-ll Yt-l...o) dWt-l (11)

Eq. (10) and (11) result in recursive formulas for updating the prior
probability P(Wt I Yt-l...O) to give the posterior P(Wt I Yt...o) at each time
step. Given the linear Gaussian assumptions we made, this recursive
formula is known as the Kalman filter, and its derivation for our simple
example system is developed in the Appendix.

The Kalman filter first updates the estimate and variance from the
previous time step according to how the state of the environment is
likely to have evolved given the assumed dynamics of w. Note that in
our case only the variance is updated, since our model assumes that W

Figure 2. A graphical representation of the causal relationships implied by Eq.
(7) and (8).
The state at time t, WI, is assumed to drift over time, which is represented by
the horizontal arrow linking states at subsequent time steps. The sensory
obs~rvations Y' are assumed to depend on the state, as indicated by the vertical
arrows.

.j
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follows a random walk, and there is hence no information on how w is
likely to develop in the absence of sensory feedback:

A A A2 A2 2 (12)Wt-E = Wt-l; O't-E = O't-1 + O'w

where Wt-E is the prior estimate, or prediction, before new sensory
input becomes available and O',2-E is the associated uncertainty as
measured by the variance of the of the prior distribution (see Appendix).

Second, the estimate and the associated uncertainty are updated to
account for the newly arrived sensory feedback:

Wt = W'-E + Kt (Yt -Wt-E) (13)

0';=O't~E'(1-Kt) (14)

The Kalman gain K, defined according to Eq. (20) in the Appendix,
determines how much an individual instances of sensory feedback influ-
ence the estimate of the underlying W:

2

Kt =~ (15)
O"y+O",-.

These equations also make sense intuitively. The updating step in Eq.
(12) always increases the uncertainty in the estimate, which is reason-
able, since W has evolved randomly since the last observation. On the
other hand, observing any sensory data (even with a very large variance)
will always reduce the variance of the estimate (see Eq. (14», and
conversely, the variance of the estimate can never be larger than the
variance of the sensory feedback (see Eq. (19». The Kalman gain
determines how much an individual instance of feedback influences the
estimate, and hence sets the time scale over which sensory inputs are
averaged. If the sensory feedback is very noisy relative to the uncer-
tainty in the estimate, the Kalman filter averages over many time steps,
reducing the noise. If on the other hand the feedback is relatively reli-
able, then larger changes to the estimate are made at each time step,
resulting in a faster response of the estimator to changes in the environ-
ment. If no sensory feedback is available (equivalent to setting O'y2 -700)
the Kalman gain becomes zero and the only effect of the recursive
update is to increase the uncertainty in the estimate due to the drift in the
state of the environment.

The above procedure for optimal estimation is a special case of the
Kalman filter for our assumption of a very simple dynamical system for
w. In general the Kalman filter is applicable to any linear system (with
arbitrary number of state variables) with Gaussian noise, .and its deriva-
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tion is along the same lines as presented here, using vectors and
matrices to represent the state variables and their dynamics (Goodwin &
Sin, 1984). For the cases of non-linear dynamics the system can be line-
arized around the previous estimate, resulting in the extended Kalman
filter that, although not guaranteed to perform optimally, is generally a
good approximation for systems with benign non-linearities. In an
interesting example, Singhal and Wu (1989) have applied the extended
Kalman filter to learning non-linear problems using a multi-layer neural
network; this resulted in superior learning performance when compared
to standard back-propagation algorithms. In this setting the Kalman filter
can be seen as a way of finding the optimal learning rates for the neural
network.

Although the Kalman filter uses the simplifying assumptions of linear
dynamics and Gaussian noise, the principle of recursively applying
Bayes rule (Eq. (10) and (11» to optimally infer properties of the envi-
ronment applies to arbitrary systems. It is however important to note
that any optimal estimation procedure can only be said to be optimal
given the knowledge of - and the assumptions about the system in ques-
tion. As a result, it is crucially important to choose an appropriate
model for the desired level of description.

Integrating contextual and temporal information

In the previous section we have derived the Kalman filter for a simple
system underlying adaptation to a randomly changing, noisy environ-
ment. However, daily experience teaches us that we do not solely inte-
grate past experience to determine our motor actions. Much to the
contrary, in order to be able to interact with many different objects and
environments, we must make efficient use of contex1iIal information
other than sensory feedback directly related to our action. When step-
ping on an escalator, for example, the context of seeing the escalator
allows us to be prepared to step onto it. In fact, if the escalator is actu-
ally not moving, we experience a sensation of "surprise" for a short
moment (Reynolds & Bronstein, 2001).

Fortunately, the Bayesian framewor~ we used to derive the Kalman
filter is easily extended to include context as an additional source of in-
formation. Consider the graphical model represented in Figure 3. The
arrows indicate causal relationships between the variables, and the grey

.
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shading indicates that again w is a hidden parameter we want to esti-
mate. In addition to sensory feedback y, we now have additional con-
textual information C helping us to infer the distribution of w. The
graph can be summarized to mean that the object or environment asso-
ciated with the hidden parameter w causes the sensation y, while the set-
ting of the parameter depends on the context C. In the previous section
we showed how Bayes rule can be used to infer an estimate of the state
of the environment from information contained in the entire history of
sensory feedback. Now we assume that we have access to contextual
cues C, which give us direct information on the hidden parameter w.
Using the fact that under this model sensory feedback Yt depends solely
on the current hidden state Wt and that Wt depends only on past sensory
feedback and context, we get:

P(Wt I Yt...O,Ct...o) oc P(yt I Wt,Yt-J...O,Ct...o) . P(Wt-ll Yt-l...0,Ct...o)
= P(yt I wr) . P(Wtl Yt-l...0,Ct...o)

Unless we have a model of how the context and previous sensory
experience interact to determine the hidden parameter, we cannot sim-
plify this expression further. Fortunately it is often a good assumption
that the influences of context and previous experience are independent.
Consider, for example, the situation where the context indicates directly
the nature of an object (and hence the likely value of w) by the feel of

Figure 3. An extension to the model in Figure 2, where context affects the state
at each time step. In this view the context determines a distribution over
possible states, which is combined with sensory feedback onli(le.

~
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holding it in the hand. If we now pick up many such objects, the con-
textual cue indicates the nature of the object, independent of which ob-
ject was picked up before. A possible counterexample in which context
and previous experience interact would be a somewhat abstract cue indi-
cating that the object will not change for some time.

Assuming that the influences of current context and past experience
are indeed conditionally independent, i.e.,

P(Wt I Yt-l...O,Ct...o) oc P(Wt I Ct) . P(Wtl Yt-l...O,Ct-l...O)

we get the posterior probability in terms of three factors:
P ( w, I Y I . . .0 ' C I.. 0 ) oc [~~~ . ~i~~J~ . [~J!-~!!..:.5~~ ( 16)

cutTent cutTent sensory integrnted pas!
context feedback experience

This expression for the posterior probability of Wt can be interpreted by
picturing that both the current context and the integrated past experience
are trying to wield their influence over the sensory feedback which had
just been received. If, for simplicity, we assume that the distributions P
are single-peaked (such as a Gaussian), then if the context is more infor-
mative of the setting of w, the distribution of W given the context (the
first factor in Eq. (16» will be narrower than the distribution given the
previous experience (the last factor in Eq. (16». When the distribution
of the current sensory feedback (the middle factor in Eq. (16» is multi-
plied by the two other factors, the location of its peak is more strongly
attracted by the higher, narrower peak, as illustrated by Figure 4.

This way of combining different sources of information can explain
why some form of contextual information can be very effective while
others are ignored (see next section): if the motor system does not have
an informative model P(Wt I Ct) of how the context affects relevant pa-
rameters, i.e., P(Wt I Ct) is flat and not particularly peaked on any value
of w, then the context will have no or only very little influence on the
final estimate of w. For example, the color of an object would not ordi-
narily be an informative context for the object's mass, whereas the size
would be.

While the Gaussian assumption is plausible for the noise sources
modeled by the Kalman filter, when considering contextual information,
it might often be necessary to allow a multi-modal distribution of states
given the context (P(wtl Ct) in Eq. (16», for example, to represent a
context in which we interact with one of two objects. Figure 5a-c
illustrates that when the posterior distribution over states is calculated by
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combining a unimodal distribution (e.g., an estimate of the state based
purely on sensory feedback) with a bimodal distribution representing the
context, the result is not necessarily symmetric with respect to the MAP
estimate. In this case the MAP estimate does not coincide with the least
squares estimate (black and gray dots in Fig. 5).

In designing an estimator for this kind of bimodal problem, one has
to consider which method to use to map the knowledge of the statistics
of the world (contained in the posterior distribution over states) to an
estimate which can be used to execute an action. This amounts to select-
ing one of two strategies: using the MAP estimate in the example illu-
strated in Figure 5c is equivalent to a switching strategy, since the
estimate will always be jumping to the higher peak of the bimodal pos-
terior. On the other hand, using the least square estimate is equivalent to

Context Sensory feedback
dominates dominates

resulting contextI I

esimate I / I
\ II i 1\

I II
'I II

feedback I I

I, I I
\,I I

I
"

w w

- P(ylw) - P(wl C)

- - - P( w I y, C)

Figure 4. An example of how sensory feedback and contextual information are
combined.
If the uncertainty associated with sensory feedback is laI:ge compared to the
contextual information (i.e., P(y I w) is broader than P(wl C); left panel) then
the resulting estimated is dominated by the contextual information, and vice
versa (right panel). The graphs also demonstrate that the distribution of the
resulting estimate is always narrower than each of the contributing sources of
information, or in other words, adding even vague information reduces the
overall uncertainty.
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a weighting strategy corresponding to the full Bayesian treatment that
minimizes a loss function (here the squared error) under the posterior
distribution over states.

THE ROLE OF EXTERNAL CONTEXT FOR THE CONTROL
OF MULTIPLE DYNAMICAL SETTINGS'

When subjects learn to make reaching movements using a robotic
manipulandum that produces velocity dependent force field, the move-
ments are initially curved, but recover their initial shape after some
practice (Shadmehr & Mussa-Ivaldi, 1994). If subjects subsequently are
asked to make reaching movement in a force field which is the opposite

A B

l1\ I' / " /

: ,.::,(~ " .":."",~,: .'.- ..

w w
C D

~W
w w

- P(wly,C) ,.., , P(yIC)

- - - P( Y I w ) - Squared error

Figure 5. MAP and least square estimate do not necessarily coincide.
A-C: The distribution over sensory feedback (dashed line) is combined with a
bimodal distribution containing contextual information (dotted lines) to give a
probability distribution over w given sensory feedback and the context (solid
lines). For progressively broader distributions over sensory feedback from A
to C, the resulting combined distribution becomes more bimodal, and as a con-
sequence MAP (black dot) and least square (gray dot) estimates move apart.
The gray line shows the expected squared estimation error. D: If all sources of
information are Gaussian, MAP and least square estimate always cqincide.

\
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of the first one, interference occurs between the two force fields
(Brashers-Krug, Shadmehr, & Bizzi, 1996; Shadmehr & Holcomb,
1997): the learning of the second field is impaired, as compared to the
initial acquisition of the first one, and learning the second field infers
with the later recall of the first one. However, if a sufficient amount of
time passes between the presentations of the two force fields (5-6
hours), there is no interference effect and the memory of the first field is
spared. In other words, the controller for the first field some is some-
how consolidated in memory. Moreover, this consolidation process can
be correlated with metabolic changes in the brain (Nezafat, Shadmehr &
Holcomb, 2001; Shadmehr & Holcomb, 1999; Shadmehr & Holcomb,
1997). In our framework this might be interpreted to suggest that learn-
ing of an estimate of the perturbation from sensory feedback is taking
place in working memory, while storing the association between a given
context and the perturbation P(w I C) is a slower process requiring a
period of consolidation. The functional imaging results support the idea
that these two different sources of information might be stored in differ-
ent parts of the brain. In this view, interference occurs because the
online estimation process simply averages over past experience, while
consolidation allows knowledge of the perturbation to be stored as a
context dependent mapping from sensations (e.g., a force pushing to the
right) to the correct setting of the controller.

The results of the above experiments show that multiple dynamic ob-
jects can be learned, if they are well separated in time and this raises the
question what other contextual cues can be used to store controllers for
multiple dynamic environment. While it seems obvious that in daily life
the use of contextual information is crucial for successful interaction
with our environment; the above observations raise the question of
which kind of contextual information can be meaningful to the motor ~

system. Gandolfo and colleagues (Gandolfo et al., 1996) observed th~t
two opposed force-fields could be learned without interference if a dif-
ferent posture of the arm was used for each force field. After training,
movements in the absence of the force fields resulted in posture specific
aftereffects, indicating that a different controller was' associated with
each posture. However, this was only true for a postural change that in-
volved jQints participating in the movement - changing the posture of

the thumb gripping the manipulandum did not have this effect. Similarly
no effect was observed when the color of the room lighting was cor-
related with the force field.
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These results can be described parsimoniously by postulating that
adaptation is to some degree localized in state space (joint angles or
workspace position and velocity). This interpretation implies that the
motor system was unable to use the kind of cues presented in the above
studies for the control of dynamic objects and this seems to be in con-
flict with our daily experience, where we interact with many objects
based on visual, haptic, and other sensory feedback. However, in real
life, the motor system might rely on a coincidence of many consistent
sensory instances to define an object or environment, e.g., visual ap-
pearance, as well as the "feel" of a tennis racket, so that the simple kind
of contextual information provided in the experiments is simply too un-
informative. In the formalism we developed above, this correspond to a
flat probability distribution P(w I C) over adaptive states given the con-
text of, e.g., room lighting. In fact it would be rather surprising to find
any strong effects of such artificial contexts - the motor system has a
whole lifetime of exposure to naturally occurring contextual informa-
tion, so that it is not surprising that arbitrary associations, such as the
association between the color of room lighting and the dynamical prop-
erties of a manipulated object, should be hard to learn.

CONTROL OF MOVEMENTS IN TIME- VARYING
ENVIRONMENTS

The Bayesian framework put forward in this paper tells us how feed-
back should be integrated over time to optimally infer a controller for
noisy and time-varying environments or objects. Control in such envi-
ronments has been studied experimentally for both "prism adaptation
paradigms" involving kinematic perturbations of visual feedback, as
well as force-field adaptation paradigms which perturb the dynamic
properties of a manipulated object.

Adaptation to kinematic perturbations

How does the internal estimate of a visual perturbation depend on the
availability of visual feedback? To address this question, Vetter and
Wolpert (2000b) asked subjects to make. reaching movements to a visual
target. After an initial learning phase, when subjects experienced a ran-
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dom sequence of two visual perturbations, they were tested with either
no visual feedback or brief instances of feedback. Their results can be
summarized as showing that in the absence of visual feedback, the motor
system had a prior estimate of the perturbation given the context of the
experimental setting, which was the average of the two perturbations in
the learning phase. Incidentally, this suggests that the motor system
averages over all possible context instead of using a MAP estimate, as
discussed above. Furthermore, the effect of feedback on the estimate of
the perturbation, as measured by the position of the endpoint of the
movement was larger if feedback was given later on in the movement.
Although this result is seemingly paradoxical, since receiving feedback
earlier leaves more .time for the movement to be updated, it is naturally
explained by our estimation framework, which assumes that sources of
information are weighted by a measure of their certainty: in the absence
of sensory feedback, the uncertainty in the feedback-based estimate
grows with time according to Eq. (8) and (12); consequently estimates
based on later instance of feedback will have lower uncertainty at the
end of the movement and will hence be weighted more strongly.

The results in the previous paragraph suggest that internal estimates
of the environment are updated, even in the absence of sensory feed-
back, as suggested by Eq. (8). Another experiment in the same paper
illustrates this point further: if subjects make reaching movements with
either veridical visual feedback or feedback translated relative to the
hand position, then the hand position does not decay to baseline when
feedback is removed for a number of reaches. Instead it converges to the
average of the veridical and perturbed hand positions. Again this can be
explained by the increasing uncertainty in the absence of the visual feed-
back, so that the context based information (equal amounts of veridical
and translated trials) dominates. Vetter and Wolpert model this prior
knowledge implicitly by assuming a process switching between two
discrete, modules (one for each context), each with a prior probability of
0.5. However, the data are equally well explained by a non-modular
model of sensory and contextual integration of the form of Eq. (16): as
feedback is removed, the uncertainty associated with the feedback based
estimate increases, so that the final estimate is eventually dominated by
the contextual information. The context could either be represented as a
Gaussian centered on the average translation, or a bimodal distribution
with a lobe at both the veridical and translated settings (see Fig. 5c,d).

/
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Most of the models in this paper assume that the CNS has a very
simple random walk model (Eq. (8)) of how the world evolves. This
raises two questions: First, in an environment which is well described
by this model, how close to the optimal estimator (the Kalman filter
given by Eq. (13), (14), and (15)) is human performance? Ingram (1999)
shows that human subjects perform very close to the ideal estimator in a
reaching task with randomly drifting displacements of the visual feed-
back of the endpoint. She found that subjects were able to use up to 80
percent of the information contained in the sequence of displacements.
Second, is the motor system limited to a random walk model (Eq. (8)) in
estimating the evolution of a given context? ,Using a tracking task,
Vetter and Wolpert (20OOa) provide evidence that the CNS can at least
model a constant rate of change when exposed to a slow, sinusoidally
varying visual perturbation.

Adaptation to dynamic perturbations

The visual perturbation experiments discussed in the previous section
rely on the fact that for a purely visual task, sensory feedback can easily
be manipulated. Interpretation of these experiments relies on the idea
that, since there is no mechanical interaction with the movement, the
endpoint of the movement is a good indicator of the internal estimate, or
model, of the perturbation. Wolpert and colleagues used an elegant
"trick" to extend this idea to dynamic perturbations (Wolpert,
Ghahramani, & Jordan, 1995) by asking the subjects to estimate the
position of their hand after making a movement in the dark. A Kalman
filter model similar to the one described in this paper accurately pre-
dicted the changes in the bias and variance of the estimate of hand posi-
tion, both as a function of movement direction and externally applied
forces.

However, here we are not interested in how the motor system forms
an internal estimate of its own state, but the related question of how an
internal estimate of the dynamics of an environment or object is formed
and used for control. In that case it is impossible (at least in healthy sub-
jects) to directly dissociate the mechanical perturbations applied to the
hand from the feedback received by the mofor system, as proprioceptive
sensory feedback will always be pre~ent. While catch trials, where the
external perturbation is unexpectedly removed, can give an indication of

/
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the internal estimate the motor system has formed about the environ-
ment, the interpretation can be confounded by the continuous presence
of feedback. Nevertheless recent experiments on non-stationary force
fields have provided some results relevant to the proposed estimation
problem. We will discuss these findings in the light of a system identi-
fication perspective.

When subjects made reaching movements while exposed to a velocity
dependent force-field with a magnitude that varied randomly from one
trial to the next, the effect of the perturbation on the movements de-
creased during the experiment (Scheidt et al., 2001; Takahashi et al.,
2001). This suggests that subjects were able to adapt to the force fields,
in spite of their J:andom nature. Both studies found that subjects showed
an adaptive state appropriate for the average magnitude of the force
field, even when the force-field magnitude had a bimodal distribution
and the average magnitude field was never experienced (Scheidt et al.,
2001). Scheidt and colleagues also found a dependence of performance
on the force field experienced on the previous trials, indicating that a
estimate of the force field is based on previous experience, as previously
shown for a single, fixed force field (Thoroughman & Shadmehr, 2000).
Unfortunately, both these results are consistent with any learning rule
based on incremental updates as new sensory data becomes available,
which would result in the reported averaging characteristics, as well as
the dependence on previous experience.

However, Takahashi and colleagues (200 1) observed that while catch
trials were curved in the direction opposite to the force field (indicating
that an internal estimate of the force was indeed formed), this curvature
was smaller for catch trials following exposure to the random field than
for catch trials following a fixed force field with a magnitude equal to
the average magnitude of the randomly varying one. They interpreted
this finding as evidence for a dual control mechanism: an estimation
based controller compensating for the average perturbation, in combina-
tion with low-level impedance control by regulating muscle-cocontrac-
tion. While stiffness regulation surely forms an important part of the
control strategies available to the human motor system, these experi-
mental findings are parsimoniously explained by the Kalman filter
model: for the fixed force field, the Kalman gain will be small because
the estimate based on previous experience is very reliable. In the more
variable, random condition, the Kalman gain would be increased be-
cause of the increased uncertainty associated with the e.stimate, giving
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higher weight to online feedback. As a result, the absence of the force
on catch trials is detected earlier in the trial and the resulting movement
is less curved. Although both the co-contraction and the Kalman filter
hypothesis can explain the decreased magnitude of the catch trials, the
experiment discussed in the next paragraph supports the latter.

The studies discussed in the previous section show that in the case of
adaptation to a randomly switching force field, movements are consis-
tent with adaptation to the average of the experienced forces. This sug-
gests that in the case when the average perturbation is zero no adaptation
occurs. This idea was tested by Korenberg and Ghahramani (2002), by
investigating reaching movements in a force field switching between two
opposed directions. They studied both a random sequence of the two
force fields, as well as a predictable sequence, switching the force on
every trial. All but two (out of a total of 28) subjects were unable to use
the information contained in the predictable sequence to compensate for
the force-field, which was evident from the fact that catch trials where
only slightly curved and that there was no significant difference between
random and predictable sequences. Furthermore, the small curvature of
catch trials was opposite to the direction of the previously experienced
(as opposed to one predicted by the sequence), indicating a residual
adaptation to the previously experienced force field. This indicates that
in nearly all of the subjects, adaptation was purely based on previous
experience, even if the perturbation was completely predictable from the
preceding trial.

In spite of the absence of feedforward adaptation, the reaching move-
ments became significantly straighter during the experiment and, con-
sistent with the results by Takahashi and colleagues (2001), the bias of
catch trials decreased. However, Korenberg and Ghahramani (2002)
found additional changes to the pattern of reaching movements, that sup-
port the hypothesis that the CNS indeed integrates sensory feedback
according to the estimation model in Eq. (13)-(15). The underlying
assumption is that since sequence information is not used, the switching
force field is interpreted as a rapidly drifting environment, and hence
sensory feedback is given a greater weight. This makes the prediction
that feedback should affect the ongoing movement progressively more,
and that movement variability should increase, due to the reduced time
scale of averaging.

To test the effect of feedback on the ongoing movement, Korenberg
and Ghahramani introduced a novel type of catch trial for. which the



.. -'

558 A. T. Korenberg & Z. Ghahramani

force was removed only after the movement started and found an in-
creasing response to the resulting small force pulse at the beginning of
the movement, as predicted by the model. This increasing feedback
response suggests that increasing co-contraction is unlikely to explain
the changes in reaching movements, since increased co-contraction
could be expected to lead to higher limb impedance. In addition, the
variability of catch trials was increased more than 10 fold with respect
to baseline movements although both types of movements have exactly
the same dynamic context (i.e., forces are switched off). This is consis-
tent with the second prediction of the model that everything else being
equal, the variability of movements should increase as a result of the
exposure to a switching force field environment.

In summary, the switching force field experiments have two main
conclusions. Consistent with the difficulty in associating a force field
with an abstract cue (e.g., room lighting), the information contained in a
simple, predictable sequence of opposed force fields could not be used
to learn both fields simultaneously. Instead performance was not signifi-
cantly different if a random sequence was used. The behavior was con-
sistent with an adaptive mechanism based on online averaging of sensory
information, as in the case of a fixed force field (Thoroughman &
Shadmehr, 2000) or a force field with randomly varying magnitude, but
fixed direction (Scheidt et al., 2001; Takahashi et al., 2001). However,
in the case (>f two opposed force fields, adaptation to one field interferes
with performance when moving in the other field. Under these circum-
stances, the influence of previous trials decreases, while the effect of
feedback online increases. These findings are parsimoniously explained
by the integration model proposed in this paper, assuming that the motor
system approximates the switching force field environment by a rapidly
drifting one.

CONCLUSION

We have presented a new point of view for the analysis of motor
learning which explicitly takes into account the uncertainty inherent in
the sensory feedback and the controlled object. The key idea is to treat
motor learning as the problem of inferring the parameters of the control
system from noisy observations and contextual information. In this
framework Bayesian theory is used to optimally combine these different

I
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"
l:sources of information. In the case of a linear system with Gaussian -

noise, this approach results in the Kalman filter, which is the optimal
estimator under these assumptions.

We based our discussion on an extremely simplified linear system, as
our goal was to illustrate the basic idea of how uncertainty in sensory
feedback and the controlled environment leads to constraints on the effi-
cient use of these sources of information. Using such a simplified model
necessarily means renouncing the ambition to explain many experi-
mental results in great detail, for example, details of movement tra-
jectories. In fact by limiting the complexity of the model, we explicitly
ignore details of the motor system in order to concentrate on the under-
lying principle of optimal probabilistic inference as a unifying explana-
tion for a number of experimental observations relating to adaptation in
non-stationary environments. Rather than explaining the details of each
of the experiments discussed in this paper, the aim of the model is to
point out and explain the communalities. Such a review of experimental
work in the light of an abstract model is necessarily incomplete,
although we have included all experimental work relevant to the com-
putational modelling of adaptation to non-stationary environment that we
are aware of. Likewise, our model is not comprehensive of all possible
reactions of the motor system in the face of non-stationary environ-
ments, as it completely ignores, for example, any high-level cognitive
influences.

We used a very simple random walk model of how the environment
might change over time. Considering that a large amount of the uncer-
tainty arises from the motor system itself (e.g., neuro-motor noise,
fatiguing muscles, miscalibration of visuomotor maps), modelling the
controlled environment as randomly drifting might actually be a close
approximation to the reality the motor system has to deal with. In fact,
when subjects are exposed to a visual perturbation with such a drifting
behavior, the resulting behavior is close to optimal in the sense that
most of the informjition available in the random sequence 'of perturba-
tions is used (Ingratb, 1999). -

On the other hand in the switching force-field experiment (Korenberg
& Ghahramani, 2002), subjects acted far from optimal by completely
discarding the information available from the predictable alternation of
force-fields. The key to understanding this discrepancy might be to con-
sider the ecological environment that the motor system has evolved to
master. In order to be able to rapidly adapt its behavior to the environ-
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ment based on limited, noisy data, the motor system has used prior
knowledge of the statistical structure of the world. Real world objects
simply do not switch in predictable sequences and without associated
sensory cues; it therefore seems plausible that artificial environment of
this kind could be interpreted to be drifting rapidly instead.

A classic experiment in animal conditioning of taste aversion under-
lines the importance of the animal's prior assumptions in how it inter-
prets contextual information. If a rat was given a combined conditioned
stimulus of sugar water, light and sound, and then made to feel sick,
only the taste of the sugar water resulted in aversive behavior. However,
if an electric shock was used as unconditioned stimulus, it became asso-
ciated with the light and sound (Garcia & Koelling, 1966) and not with
the sugar water. The associations the rat formed were determined by the
set of naturally occurring associations - sickness being associated with
taste (e.g., from ingesting poisoned food) and pain with an external
event. Similarly, while the human animal readily uses many types of
contextual cues to interact with the world, the force field adaptation
studies discussed here have shown that non-ecological cues such as room
lighting or predictable switching sequences are not easily associated with
behaviors which are otherwise easily learned.

RESUME

L 'adaptabilite du systeme moteur a des perturbations visuelles ou
mecaniques a ete clairement demontree par des experiences d' adaptation
a des decalages prismatiques de la scene visuelle, ou par I' adaptation a
des champs de force produits par un manipulandum robotise. Bien que
ces experiences aient demontre la remarquable adaptabilite du systeme
moteur, dans Ie monde reel, Ie systeme adaptatif doit tenir compte de
l'incertitude inherente a l'environnement avec lequel il interagit. Deux
sources d'incertitude doivent etre considerees : l'incertitude associee aux
retro-actions sensorielles et I' incertitude provenant du fait que I' environ-
nement peut changer. Ces differentes sortes d' incertitude produisent des
contraintes sur la fa~on dont les informations sensorielles et contex-
tuelles doivent etre integrees dans Ie temps afin de mettre a jour de
fa~on optimale un systeme de contr6le adaptatif. Nous considerons
I' adaptation motrice cornme un probleme d' identifica~ion de systeme



ri':~ . ~
"
c,
"

I A Bayesian view of motor adaptation 561

",
inferant un modele interne de I' environnement a partir d' observations ~

bruitees, en nons basant sur l'exemple d'un systeme lineaire simple, et
en etendant cette idee afin d' inclure l' information contextuelle. La
theorie Bayesienne fournit un cadre dans lequel de telles sources incer-
taines d'information peuvent etre integrees de fa~on optimale. Nous
discutons brievement leg resultats experimentaux en termes de role de
l' information contextuelle sur l' adaptation a des charges dynamiques et
nons passons en revue un certain nombre d'experiences recentes qui
abordent explicitement Ie theme de l' adaptation a des environnements
bruites et variant en fonction du temps.
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APPENDIX - BAYES RULE

Consider two events A (e.g., "it rained") and B (e.g., "the ground is wet")
occurring with probabilities P(A) and P(B). If the two events are not inde-
pendent, then given that A occurred we get a different probability P(B IA) for
observing B. P(BIA) (i.e., the probability that the ground is wet, given that it
rained) is called the conditional probability of B given A, and similarly we can
define the probability of P(A I B) (i.e., the probability that it rained, give~ that
the ground is wet). The joint probability of both A and B (i.e., wet ground and
rain) occurring is given by:

P(A,B) = P(A). P(BI A) = P(B). P(A I B)

Let's suppose we observe B but are really interested in knowing how probable
A is given that we observed B. To do this inference, we can use Bayes rule,
which follows straight from the above expression for the joint probability:

P(A I B) = P(BI A). P(A)
P(B)

In this context, P(B IA) is called the likelihood of observing B, P(A) is the
prior and P(A I B) is the posterior probability over A. The same argument holds
if the Ps are probability distributions over the random variables A and B. In
that case P(B) is a constant with respect to A, ensuring that J P(A I B)dA = 1,
as required for a probability distribution. If we are only interested in the shape
of P(A IB), than we do not need to be concerned with this normalization
constant and can use

P(A I B)oc P(BI A). P(A)

APPENDIX - A SIMPLE KALMAN FILTER

This appendix derives the Kalman filter for the optimal estimate given the
assumptions of linear dynamics (in fact a random walk) and Gaussian noise.
The derivation reads on from Eq. (11) and results in the update equations (12),
(13) and (14). Given the assumptions of linear dynamics and Gaussian noise
for the evolution of w (Eq. (8», the prior distribution P( WI I YI-I...O) is also a
Gaussian: Since we assume that w follows a random walk with no consistent
trend, P( wI I YI-I...O) is also a Gaussian with the same mean and increased
variance as compared to P( WI-I I YI-l...O) . To indicate that the prior is in fact
the distribution representing our knowledge about w just before the current
measurement is taken into account, we use the time index t-E:

P(Wt I Yt-l...0) - N(lJ.t-E'oz,-E); (17)

IJ.t-E = IJ.t-l; O:-E= 0:-1 + ~
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The sensory feedback is given by the state of the world corrupted by
Gaussian noise and we therefore also get a Gaussian (centered on wand with
variance given by the feedback noise) for the likelihood of observing a given
sensation y:

P(yt I Wt) - N(Wt, dy) (18)

Since the posterior probability P(Wt I Yt...O), which we are interested in, is
simply the product of two Gaussians ( Eq. (17) and Eq. (18», it is also a
Gaussian, centered on the average of the individual centers weighted by the
inverse of the respective variances and with a variance equal to the geometric
mean of the individual variances:

P(WtIYt...o) 9I{: (,ut'O";)
- !u,z-£ . ,u'-E + /u; . Y, . - (19)

,u, - , V 2 - V 2 + V 2
V 2 + V 2 /CT, /CT,-£ /CTy

/ CT,-£ / CT,

How do we extract an estimate of Wt from the posterior distribution? One
possibility is to simply pick the value of Wt for which the posterior probability
is maximized (MAP estimate), i.e., the mean of the distribution in the
Gaussian case. Alternatively we could seek to minimize the estimation error. If
we choose the squared estimation error as a cost function, it is easy to show
that the resulting (least square) estimate is again the mean of the posterior
distribution. Although in the Gaussian case (and in fact for any unimodal dis-
tribution centered on its mean) the MAP and least square estimates coincide,
this is not generally the case.

By equating the estimate w with the mean .u ~f the posterior and rewriting I

Eq. (19) as
2 ( 2 )- CT,-£ . 2 - CT,-£ 2

,u, -,u'-E+~(,ut-l-Y')' 0", - 1-~ O"'-E (20)

we obtain a recursive procedure for calculating the optimal estimate w of W
and the associated uncertainty, as measured by the variance in W, 6'2. Using
the definition of the Kalman gain in Eq. (15) result in the update equations Eq.
(12), (13), and (14).
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