
A HIERARCHICAL COMMUNITY OF EXPERTSGEOFFREY E. HINTONBRIAN SALLANSANDZOUBIN GHAHRAMANIDepartment of Computer ScienceUniversity of TorontoToronto, Ontario, Canada M5S 3H5fhinton,sallans,zoubing@cs.toronto.eduAbstract. We describe a directed acyclic graphical model that containsa hierarchy of linear units and a mechanism for dynamically selecting anappropriate subset of these units to model each observation. The non-linearselection mechanism is a hierarchy of binary units each of which gates theoutput of one of the linear units. There are no connections from linearunits to binary units, so the generative model can be viewed as a logisticbelief net (Neal 1992) which selects a skeleton linear model from among theavailable linear units. We show that Gibbs sampling can be used to learnthe parameters of the linear and binary units even when the sampling is sobrief that the Markov chain is far from equilibrium.1. Multilayer networks of linear-Gaussian unitsWe consider hierarchical generative models that consist of multiple layersof simple, stochastic processing units connected to form a directed acyclicgraph. Each unit receives incoming, weighted connections from units inthe layer above and it also has a bias (see �gure 1). The weights on theconnections and the biases are adjusted to maximize the likelihood that thelayers of \hidden" units would produce some observed data vectors in thebottom layer of \visible" units.The simplest kind of unit we consider is a linear-Gaussian unit. Togenerate data from a model composed of these units we start at the top
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Figure 1. Units in a belief network.layer and stochastically pick states for each top-level unit from a Gaussiandistribution with a learned mean and variance. Once the states, yk of unitsin the top layer have been chosen, we can compute the top-down input, ŷjto each unit, j, in the next layer down:ŷj = bj +Xk wkjyk (1)where bj is the bias of unit j, k is an index over all units in the layer aboveand wkj is the weight on the top-down connection from k to j. The stateof unit j is then picked randomly from a Gaussian distribution with meanŷj and a variance �2j that is learned from data.The generative model underlying factor analysis (Everitt, 1984) consistsof one hidden layer of linear-Gaussian units (the factors) that send weightedconnections (the factor loadings) to a visible layer of linear-Gaussian units.Linear models with Gaussian noise have two important advantages:They often provide good models of continuous data and they are easy to �teven when many of the linear variables are unobserved. Given the states ofany subset of the linear units it is tractable to compute the posterior dis-tribution across the unobserved units and once this distribution is known,it is straightforward to use the EM algorithm to update all the parametersof the model. Unfortunately, linear models ignore all the higher order sta-tistical structure in the data so they are inappropriate for tasks like visionin which higher-order structure is crucial.One sensible way to extend linear models is to use a mixture of M ofthem (Ghahramani and Hinton, 1996; Hinton et al., 1997). This retainstractability because the full posterior distribution can be found by com-puting the posterior across each of the M models and then normalizing.



A HIERARCHICAL COMMUNITY OF EXPERTS 3However, a mixture of linear models is not 
exible enough to represent thekind of data that is typically found in images. If an image can have severaldi�erent objects in it, the pixel intensities cannot be accurately modelledby a mixture unless there is a separate linear model for each possible com-bination of objects. Clearly, the e�cient way to represent an image thatcontains n objects is to use a \distributed" representation that contains nseparate parts, but this cannot be achieved using a mixture because thenon-linear selection process in a mixture consists of picking one of the lin-ear models. What we need is a non-linear selection process that can pickarbitrary subsets of the available linear-Gaussian units so that some unitscan be used for modelling one part of an image, other units can be used formodelling other parts, and higher level units can be used for modelling theredundancies between the di�erent parts.2. Multilayer networks of binary-logistic unitsMultilayer networks of binary-logistic units in which the connections forma directed acyclic graph were investigated by Neal (1992). We call themlogistic belief nets or LBN's. In the generative model, each unit computes itstop-down input, ŝj , in the same way as a linear-Gaussian unit, but insteadof using this top-down input as the mean of a Gaussian distribution it usesit to determine the probability of adopting each if the two states 1 and 0:ŝj = bj +Xk wkjsk (2)p(sj = 1jfsk : k 2 pajg) = �(ŝj) = 11 + e�ŝj (3)where paj is the set of units that send generative connections to unit j (the\parents" of j), and �(�) is the logistic function. A binary-logistic unit doesnot need a separate variance parameter because the single statistic ŝj issu�cient to de�ne a Bernouilli distribution.Unfortunately, it is exponentially expensive to compute the exact poste-rior distribution over the hidden units of an LBN when given a data point,so Neal used Gibbs sampling: With a particular data point clamped on thevisible units, the hidden units are visited one at a time. Each time hiddenunit u is visited, its state is stochastically selected to be 1 or 0 in propor-tion to two probabilities. The �rst, P�nsu=1 = p(su = 1; fs�k : k 6= ug) isthe joint probability of generating the states of all the units in the network(including u ) if u has state 1 and all the others have the state de�ned bythe current con�guration of states, �. The second, P�nsu=0, is the samequantity if u has state 0. When calculating these probabilities, the states



4 GEOFFREY E. HINTON ET AL.of all the other units are held constant. It can be shown that repeated ap-plication of this stochastic decision rule eventually leads to hidden statecon�gurations being selected according to their posterior probabilities.Because the LBN is acyclic it is easy to compute the joint probabilityP� of a con�guration, �, of states of all the units.P� =Yi p(s�i jfs�k : k 2 paig (4)where s�i is the binary state of unit i in con�guration �.It is convenient to work in the domain of negative log probabilities whichare called energies by analogy with statistical physics. We de�ne E� to be� lnP�. E� = �Xu (s�u ln ŝ�u + (1� s�u) ln(1� ŝ�u)) (5)where s�u is the binary state of unit u in con�guration �, ŝ�u is the top-downexpectation generated by the layer above, and u is an index over all theunits in the net.The rule for stochastically picking a new state for u requires the ratioof two probabilities and hence the di�erence of two energies�E�u = E�nsu=0 � E�nsu=1 (6)p(su = 1jfs�k : k 6= ug) = �(�E�u ) (7)All the contributions to the energy of con�guration � that do not dependon sj can be ignored when computing �E�j . This leaves a contribution thatdepends on the top-down expectation ŝj generated by the units in the layerabove (see Eq. 3) and a contribution that depends on both the states, si,and the top-down expectations, ŝi, of units in the layer below (see �gure 1)�E�j = ln ŝ�j � ln(1� ŝ�j ) +Xi hs�i ln ŝ�nsj=1i + (1� s�i ) ln �1� ŝ�nsj=1i �� s�i ln ŝ�nsj=0i � (1� s�i ) ln �1� ŝ�nsj=0i �i (8)Given samples from the posterior distribution, the generative weightsof a LBN can be learned by using the online delta rule which performsgradient ascent in the log likelihood of the data:�wji = �sj(si � ŝi) (9)3. Using binary units to gate linear unitsIt is very wasteful to use highly non-linear binary units to model datathat is generated from continuous physical processes that behave linearly
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... ... ... ... ... ...Figure 2. Units in a community of experts, a network of paired binary and linear units.Binary units (solid squares) gate the outputs of corresponding linear units (dashed circles)and also send generative connections to the binary units in the layer below. Linear unitssend generative connections to linear units in the layer below (dashed arrows).over small ranges. So rather than using a multilayer binary network togenerate data directly, we use it to synthesize an appropriate linear modelby selecting from a large set of available linear units. We pair a binary unitwith each hidden linear unit (�gure 2) and we use the same subscript forboth units within a pair. We use y for the real-valued state of the linearunit and s for the state of the binary unit. The binary unit gates the outputof the linear unit so Eq. 1 becomes:ŷj = bj +Xk wkjyksk (10)It is straightforward to include weighted connections from binary unitsto linear units in the layer below, but this was not implemented in theexamples we describe later. To make Gibbs sampling feasible (see below) weprohibit connections from linear units to binary units, so in the generativemodel the states of the binary units are una�ected by the linear units andare chosen using Eq. 2 and Eq. 3. Of course, during the inference processthe states of the linear units do a�ect the states of the binary units.Given a data vector on the visible units, it is intractable to computethe posterior distribution over the hidden linear and binary units, so anapproximate inference method must be used. This raises the question ofwhether the learning will be adversely a�ected by the approximation errorsthat occur during inference. For example, if we use Gibbs sampling for



6 GEOFFREY E. HINTON ET AL.inference and the sampling is too brief for the samples to come from theequilibrium distribution, will the learning fail to converge? We show insection 6 that it is not necessary for the brief Gibbs sampling to approachequilibrium. The only property we really require of the sampling is that itget us closer to equilibrium. Given this property we can expect the learningto improve a bound on the log probability of the data.3.1. PERFORMING GIBBS SAMPLINGThe obvious way to perform Gibbs sampling is to visit units one at atime and to stochastically pick a new state for each unit from its posteriordistribution given the current states of all the other units. For a binary unitwe need to compute the energy of the network with the unit on or o�. Fora linear unit we need to compute the quadratic function that determineshow the energy of the net depends on the state of the unit.This obvious method has a signi�cant disadvantage. If a linear unit, j, isgated out by its binary unit (i.e., sj = 0) it cannot in
uence the units belowit in the net, but it still a�ects the Gibbs sampling of linear units like k thatsend inputs to it because these units attempt to minimize (yj � ŷj)2=2�2j .So long as sj = 0 there should be no net e�ect of yj on the units in the layerabove. These units completely determine the distribution of yj , so samplingfrom yj would provide no information about their distributions. The e�ectof yj on the units in the layer above during inference is unfortunate becausewe hope that most of the linear units will be gated out most of the time andwe do not want the teeming masses of unemployed linear units to disturbthe delicate deliberations in the layer above. We can avoid this noise byintegrating out the states of linear units that are gated out. Fortunately, thecorrect way to integrate out yj is to simply ignore the energy contribution(yj � ŷj)2=2�2j .A second disadvantage of the obvious sampling method is that the de-cision about whether or not to turn on a binary unit depends on the par-ticular value of its linear unit. Sampling converges to equilibrium faster ifwe integrate over all possible values of yj when deciding how to set sj . Thisintegration is feasible because, given all other units, yj has one Gaussianposterior distribution when sj = 1 and another Gaussian distribution whensj = 0. During Gibbs sampling, we therefore visit the binary unit in a pair�rst and integrate out the linear unit in deciding the state of the binaryunit. If the binary unit gets turned on, we then pick a state for the linearunit from the relevant Gaussian posterior. If the binary unit is turned o�it is unnecessary to pick a value for the linear unit.For any given con�guration of the binary units, it is tractable to com-pute the full posterior distribution over all the selected linear units. So one



A HIERARCHICAL COMMUNITY OF EXPERTS 7interesting possibility is to use Gibbs sampling to stochastically pick statesfor the binary units, but to integrate out all of the linear units when makingthese discrete decisions. To integrate out the states of the selected linearunits we need to compute the exact log probability of the observed datausing the selected linear units. The change in this log probability when oneof the linear units is included or excluded is then used in computing theenergy gap for deciding whether or not to select that linear unit. We havenot implemented this method because it is not clear that it is worth thecomputational e�ort of integrating out all of the selected linear units atthe beginning of the inference process when the states of some of the bi-nary units are obviously inappropriate and can be improved easily by onlyintegrating out one of the linear units.Given samples from the posterior distribution, the incoming connectionweights of both the binary and the linear units can be learned by using theonline delta rule which performs gradient ascent in the log likelihood of thedata. For the binary units the learning rule is Eq. 9. For linear units therule is: �wji = � yjsj(yi � ŷi)si=�2i (11)The learning rule for the biases is obtained by treating a bias as a weightcoming from a unit with a state of 1.1The variance of the local noise in each linear unit, �2j , can be learnedby the online rule: ��2j = � sj h(yj � ŷj)2 � �2j i (12)Alternatively, �2j can be �xed at 1 for all hidden units and the e�ective localnoise level can be controlled by scaling the incoming and outgoing weights.4. Results on the bars taskThe noisy bars task is a toy problem that demonstrates the need for sparsedistributed representations (Hinton et al., 1995; Hinton and Ghahramani,1997). There are four stages in generating each K�K image. First a globalorientation is chosen, either horizontal or vertical, with both cases beingequally probable. Given this choice, each of the K bars of the appropriateorientation is turned on independently with probability 0.4. Next, eachactive bar is given an intensity, chosen from a uniform distribution. Finally,independent Gaussian noise is added to each pixel. A sample of imagesgenerated in this way is shown in �gure 3(a).1We have used wji to denote both the weights from binary units to binary unitsand from linear units to linear units; the intended meaning should be inferred from thecontext.
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a b

Figure 3. a) Training data for the noisy bars problem. b) Images generated by thetrained network. The area of each square represents the value of the corresponding pixelin the 6�6 images. White represents positive values and black represents negative values.We trained a 3-layer network on the 6� 6 noisy bars problem. The net-work consisted of one pair of units in the top hidden layer, where each pairconsists of a linear-Gaussian unit gated by its corresponding binary logis-tic unit; 24 pairs of units in the �rst hidden layer; and 36 linear-Gaussianunits in the visible layer. The network was trained for 12 passes through adata set of of 1000 images, with a learning rate of 0.04 and a weight decayparameter of 0.04. The images were presented in a di�erent, random orderfor each pass.For each image presented, 16 Gibbs sampling iterations were performed.Gibbs sampling was performed by visiting each pair of units in a layer inrandom order, where for each pair the binary unit was visited �rst, followedby the linear unit. Of the 16 network states visited, the �rst four werediscarded, and the next 12 were used for learning. The weights from thelinear units in the �rst hidden layer to the units in the visible layer wereconstrained to be positive. Without this constraint, the trained model stillgenerates images from the correct distribution, but the solution is not soeasily interpreted. The result of training is shown in �gure 4.The trained network is using 12 of the linear-Gaussian units in the �rsthidden layer to represent each of the 12 possible horizontal and verticalbars. The top level binary unit is selecting the linear units in the �rsthidden layer that represent horizontal bars by exciting the corresponding



A HIERARCHICAL COMMUNITY OF EXPERTS 9
a

b

c

d

eFigure 4. Generative weights and biases of a three-layered network after being trainedon the noisy bars problem. a) Weights from the top layer linear-Gaussian unit to the 24middle layer linear-Gaussian units. b) Biases of the middle layer linear units. c) Weightsfrom the 24 middle layer linear units to the 36 visible units. d) Weights from the toplayer binary logistic unit to the 24 middle layer binary logistic units. e) Biases of themiddle layer binary logistic units.binary units; these binary units are biased to be o� otherwise. Similarly,the binary units that correspond to vertical bars, which are often activedue to positive biases, are being inhibited by the top binary unit. The toplinear unit is simply acting as an additional bias on the linear units in the�rst hidden layer. Examples of data generated by the trained network areshown in �gure 3(b).The network was shown novel images, and 10 iterations of Gibbs sam-pling were performed. After the �nal iteration, the top level binary unitwas found to be o� for 90% of vertical images, and on for 84% of horizontalimages.5. Results on handwritten digitsWe trained a similar three-layer network on handwritten twos and threesfrom the CEDAR CDROM 1 database (Hull, 1994). The digits were scaled



10 GEOFFREY E. HINTON ET AL.to an 8 � 8 grid, and the 256-gray-scale pixel values were rescaled to liewithin [0; 1]. The 2000 digits were divided into a training set of 1400 digits,and a test set of 600 digits, with twos and threes being equally representedin both sets. A small subset of the training data is shown in �gure 5(a).
a b

Figure 5. a) A subset of the training data. b) Images generated by the trained network.For clarity, black represents positive values in this �gure.The network consisted of a single pair of units in the top hidden layer,24 pairs of units in the �rst hidden layer, and 64 linear-Gaussian units inthe visible layer. During training, the network made 43 passes through thedata set, with a learning rate of 0.01 and a weight decay parameter of 0.02.Gibbs sampling was performed as in the bars problem, with 4 discardedGibbs sampling iterations, followed by 12 iterations used for learning. Forthis task, there were no constraints placed on the sign of the weights fromthe linear-Gaussian units in the �rst hidden layer to the units in the visiblelayer. The result of training is shown in �gure 6.In this case, the network uses all 24 linear units in the �rst hidden layerto represent digit features. Some of the features are global, while others arehighly localized. The top binary unit is selecting the linear units in the �rsthidden layer that correspond to features found predominantly in threes, byexciting the corresponding binary units. Features that are exclusively usedin twos are being gated out by the top binary unit, while features that can
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eFigure 6. Generative weights and biases of a three-layered network after being trainedon handwritten twos and threes. a) Weights from the top layer linear-Gaussian unit tothe 24 middle layer linear-Gaussian units. b) Biases of the middle layer linear-Gaussianunits. c) Weights from the 24 middle layer linear-Gaussian units to the 36 visible units.d) Weights from the top layer binary logistic unit to the 24 middle layer binary logisticunits. e) Biases of the middle layer binary logistic units.



12 GEOFFREY E. HINTON ET AL.be shared between digits are being only slightly excited or inhibited. Whenthe top binary unit is o�, the features found in threes are are inhibited bystrong negative biases, while features used in twos are gated in by positivebiases on the corresponding binary units. Examples of data generated bythe trained network are shown in �gure 5(b).The trained network was shown 600 test images, and 10 Gibbs samplingiterations were performed for each image. The top level binary unit wasfound to be o� for 94% of twos, and on for 84% of threes. We then tried toimprove classi�cation by using prolonged Gibbs sampling. In this case, the�rst 300 Gibbs sampling iterations were discarded, and the activity of thetop binary unit was averaged over the next 300 iterations. If the averageactivity of the top binary unit was above a threshold of 0.32, the digit wasclassi�ed as a three; otherwise, it was classi�ed as a two. The thresholdwas found by calculating the optimal threshold needed to classify 10 of thetraining samples under the same prolonged Gibbs sampling scheme. Withprolonged Gibbs sampling, the average activity of the top binary unit wasfound to be below threshold for 96.7% of twos, and above threshold for95.3% of threes, yielding an overall successful classi�cation rate of 96%(with no rejections allowed). Histograms of the average activity of the toplevel binary unit are shown in �gure 7.
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bFigure 7. Histograms of the average activity of the top level binary unit, after prolongedGibbs sampling, when shown novel handwritten twos and threes. a) Average activity fortwos in the test set. b) Average activity for threes in the test set.



A HIERARCHICAL COMMUNITY OF EXPERTS 136. Why brief Gibbs sampling worksThere are two major di�culties in using Gibbs sampling for maximumlikelihood learning in a neural network:1. The learning algorithm is usually derived by assuming that Gibbs sam-pling produces samples from the equilibrium distribution. But whenthe weights are large, there can be high energy barriers that makeconvergence to the equilibrium distribution very slow. Moreover, it isgenerally very hard to measure whether convergence has been achieved.2. Even if the samples do come from the equilibrium distribution, non-uniform sampling noise can have unfortunate e�ects. The weights canbe strongly repelled from regions where the sampling noise is high,even if the estimated gradient of the log likelihood with respect tothe weights is unbiased. A familiar example of this phenomenon isthat gravel accumulates at the sides of a road, even if the road is 
at,because there is higher variance in the movement of the gravel wherethe tra�c is. In networks with binary logistic units this e�ect causesthe weights to be repelled from values that cause hidden units to beon about half the time, since they then have much higher variancethan when they are �rmly on or �rmly o�. This prevents uncommittedhidden units from sitting around in their middle range and followingsmall gradients of the log likelihood. The variance repulsion causesthem to wander into useless regions where they are always on or alwayso�.The sampling noise can easily be estimated by repeating exactly thesame sampling procedure several times. It should then be possible for simplegradient methods to cancel out the e�ects of non-uniform variance by usinga smaller learning rate when the variance in the estimated gradient is high.The failure to approach equilibrium seems like a far less tractable prob-lem than the sampling noise and makes Gibbs sampling seem an unpromis-ing candidate as a model of real neural computation. Fortunately, the EMalgorithm can be generalized so that each iteration improves a lower boundon the log likelihood (Neal and Hinton, 1993). In this form, the only prop-erty required of Gibbs sampling is that it get closer to equilibrium on eachiteration. There is a sensible objective function for the learning that can beimproved even if the sampling is far from equilibrium.Suppose that Gibbs sampling produces a distribution Q over the hiddenstate con�gurations. We de�ne the free energy of the network as the theexpected energy under Q minus the entropy of Q:F =X� Q�E� �  �X� Q� lnQ�! (13)



14 GEOFFREY E. HINTON ET AL.If Q is the posterior distribution over hidden con�gurations given E,then F is equal to the negative log probability of the con�guration of thevisible units under the model de�ned by E. Otherwise, F exceeds the neg-ative log probability of visible con�guration by the Kullback-Leibler diver-gence between Q and P :F = � ln p(visible) +X� Q� ln Q�P� (14)The EM algorithm consists of coordinate descent in F (Neal and Hinton,1993): a full M step minimizes F with respect to the parameters that de-termine E, and a full E step minimizes F with respect to Q, which isachieved by setting Q equal to the posterior distribution over the hiddencon�gurations given E.A major advantage of viewing EM as coordinate descent in F is that itjusti�es partial E-steps which improve F without fully minimizing it withrespect to the distribution Q. We de�ne Qt to be the distribution reachedat the end of partial E-step t and Et to be the energy function used duringpartial E-step t. Partial M-step t occurs after partial E-step t and updatesthe energy function to Et+1.To eliminate sampling noise, imagine that we have an in�nite ensembleof identical networks so that we can compute the exact Q distributionproduced by a few sweeps of Gibbs sampling. Provided we start the Gibbssampling in each network from the hidden con�guration at the end of theprevious partial E-step we are guaranteed that F t+1 � F t because thegradient M-step ensures that:X� Qt�Et+1� �X� Qt�Et� (15)while Gibbs sampling, however brief, ensures that:X� Qt+1� Et+1� +Qt+1� lnQt+1� �X� Qt�Et+1� + Qt� lnQt�: (16)In practice, we try to approximate an in�nite ensemble by using a verysmall learning rate in a single network so that many successive partial E-steps are performed using very similar energy functions. But it is still niceto know that with a su�ciently large ensemble it is possible for a simplelearning algorithm to improve a bound on the log probability of the visiblecon�gurations even when the Gibbs sampling is far from equilibrium.Changing the parameters can move the equilibrium distribution furtherfrom the current distribution of the Gibbs sampler. The E step ensures thatthe Gibbs sampler will chase this shifting equilibrium distribution. One wor-risome consequence of this is that the equilibrium distribution may end up



A HIERARCHICAL COMMUNITY OF EXPERTS 15very far from the initial distribution of the Gibbs sampler. Therefore, whenpresented a new data point for which we don't have a previous rememberedGibbs sample, inference can take a very long time since the Gibbs samplerwill have to reach equilibrium from its initial distribution.There are at least three ways in which this problem can be �nessed:1. Explicitly learn a bottom-up initialization model. At each iteration t,the initialization model is used for a fast bottom-up recognition pass.The Gibbs sampler is initialized with the activities produced by thispass and proceeds from there. The bottom-up model is trained usingthe di�erence between the next sample produced by the Gibbs samplerand the activities it produced bottom-up.2. Force inference to recapitulate learning. Assume that we store the se-quence of weights during learning, from which we can obtain the se-quence of corresponding energy functions. During inference, the Gibbssampler is run using this sequence of energy functions. Since energyfunctions tend to get peakier during learning, this procedure shouldhave an e�ect similar to annealing the temperature during sampling.Storing the entire sequence of weights may be impractical, but this pro-cedure suggests a potentially interesting relationship between inferenceand learning.3. Always start from the same distribution and sample brie
y. The Gibbssampler is initialized with the same distribution of hidden activities ateach time step of learning and run for only a few iterations. This hasthe e�ect of penalizing models with an equilibrium distribution that isfar from the distributions that the Gibbs sampler can reach in a fewsamples starting from its initial distribution.2 We used this procedurein our simulations.7. ConclusionWe have described a probabilistic generative model consisting of a hierar-chical network of binary units that select a corresponding network of linearunits. Like the mixture of experts (Jacobs et al., 1991; Jordan and Jacobs,1994), the binary units gate the linear units, thereby choosing an appropri-ate set of linear units to model nonlinear data. However, unlike the mixtureof experts, each linear unit is its own expert, and any subset of experts can2The free energy, F , can be interpreted as a penalized negative log likelihood, wherethe penalty term is the Kullback-Leibler divergence between the approximating distribu-tion Q� and the equilibrium distribution (Eq. 14). During learning, the free energy canbe decreased either by increasing the log likehood of the model, or by decreasing this KLdivergence. The latter regularizes the model towards the approximation.
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