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The use of clustering methods has rapidly become one of the
standard computational approaches to understanding mi-
croarray gene expression data [3, 1, 7]. In clustering, the
patterns of expression of different genes across time, treat-
ments, and tissues are grouped into distinct clusters (per-
haps organized hierarchically) in which genes in the same
cluster are assumed to be potentially functionally related or
to be influenced by a common upstream factor. Such cluster
structure can be used to aid in the elucidation of regulatory
networks. For example, a compendium of gene expression
profiles corresponding to mutants and chemical treatments
can be used as a systematic tool to identify gene functions
because mutants or drug targets that display similar profiles
are likely to share cellular functions [5].

One commonly used computational method of non-hierarchical
clustering based on measuring Euclidean distance between
gene expression profiles is given by the k-means algorithm [4].
However, the k-means algorithm is inadequate for describ-
ing clusters of unequal size or shape [6]. A generalization
of k-means can be derived from the theory of maximum
likelihood estimation of Gaussian mixture models [8]. In a
Gaussian mixture model, the data (e.g. gene expression pro-
files, which can be arranged into p-dimensional vectors y) is
assumed to have been generated from a finite number (k) of
Gaussians,

P (y) =

kX
j=1

φjPj(y) (1)

where φj is the mixing proportion for cluster j (fraction of
population belonging to cluster j;

P
j φj = 1; φj ≥ 0) and

Pj(y) is a multivariate Gaussian distribution with mean µj

and covariance matrix Σj . The clusters can be found by
fitting the maximum likelihood Gaussian mixture model as
a function of the set of parameters θ = {φj , µj , Σj}k

j=1 using
the EM algorithm [8]. Euclidean distance corresponds to
assuming that the Σj are all equal multiples of the identity
matrix.

An important issue that must be addressed in any cluster-
ing method is the question of how many clusters to use.
Bayesian statistics can provide a solution to model selection
questions of this kind (e.g. [2]). An elegant alternative ap-
proach is to assume that the data was in fact generated from
an infinite number of Gaussian clusters and to do Bayesian
inference under this assumption. This is a sensible way to
capture the fact we don’t really believe that gene expression
data is well modeled by a finite number of Gaussians. Also,

infinite Gaussian mixture models can readily model a fi-
nite number of non-Gaussian clusters. Finally, in an infinite
Gaussian mixture model there is no need to make arbitrary
choices about how many clusters there are in the data; nev-
ertheless, after modeling one can ask questions such as how
probable it is that two genes belong to the same cluster?

The theory of infinite mixture models is laid out in [9]. Start-
ing from a finite mixture model (1), we define a prior over
the mixing proportion parameters φ. The natural conju-
gate prior for mixing proportions is the symmetric Dirich-

let distribution: P (φ|α) = Γ(α)

Γ(α/k)k

Qk
j=1 φ

α/k−1
j . We then

explicitly include indicator variables ci for each data point
(i.e. gene or condition) which can take on integer values
ci = j, j ∈ {1, . . . , k}, corresponding to the hypothesis
that data point i belongs to cluster j. Under the mixture
model, by definition, the prior probability is proportional to
the mixing proportion: P (ci = j|φ) = φj . A key observa-
tion is that we can compute the conditional probability of
one indicator variable given the setting of all the other in-
dicator variables after integrating over all possible settings
of the mixing proportion parameters: P (ci = j|c−i, α) =R

P (ci = j|c−i, φ)P (φ|c−i, α) dφ =
n−i,j+α/k

n−1+α
, where c−i

is the setting of all indicator variables except the ith, n is
the total number of data points, and n−i,j is the number of
data points belonging to class j not including i. We now
can take the limit of k going to infinity, obtaining a Dirich-
let Process with differing conditional probabilities for clus-
ters with and without data: for clusters where n−i,j > 0:
p(ci = j|c−i, α) =

n−i,j

n−1+α
, for all other clusters combined:

p(ci 6= ci′ for all i′ 6= i|c−i, α) = α
n−1+α

. This shows that
the probabilites are proportional to the occupation numbers,
n−i,j . Using these conditional probabilities one can Gibbs
sample from the indicator variables efficiently, even though
the model has infinitely many Gaussian clusters. Having
integrated out the mixing proportions one can also Gibbs
sample from all of the remaining parameters of the model,
i.e. {µ, Σ}j . The details of these procedures can be found
in [9].

We have used infinite Gaussian mixtures to model exper-
imentally measured microarray gene expression data with
the intention of creating a general system which can answer
queries of the kind: what is the probability that two genes
belong to the same cluster (i.e. have similar functional roles
or are influenced by a common upstream factor))? Unlike
previous methods based on a single clustering of the data,
this approach computes this probability while taking into



account all sources of model uncertainty (including number
of clusters and location of clusters). We use the probabil-
ity pij that two genes i and j belong to the same cluster in
the infinite mixture model as a measure of the similarity of
these gene expression profiles. Conversely 1 − pij defines a
dissimilarity measure which for the purposes of visualization
can be input to one of the standard linkage algorithms used
for hierarchical clustering. We compare the dendrograms
thus obtained to the usual hierarchical clustering approach
which computes distance metrics on directly on the gene ex-
pression profiles or correlation coefficients between profiles
[3].

We illustrate our methods with application to two published
data sets. The first is the Rosetta compendium of expression
profiles corresponding to 300 diverse mutations and chemi-
cal treatments in S. cerevisiaie [5]. The second is the NCI-60
data set of expression profiles of cancer cell lines and drug
treatments [11]. For the NCI-60 data set, which has la-
belled classes of cell lines and drug mechanisms of action,
it is possible to compare the quality of hierarchical cluster-
ings obtained from different methods to these known classes.
However, as the literature is notably lacking in quantitative
measures of dendrogram quality, in order to perform this
comparison we have devised a quantitative measure Den-
drogramPurity, which takes as input a dendrogram tree
structure T and a set of class labels C for the leaves of the
tree and outputs a single number measuring how “pure” the
subtrees of T are with respect to the class labels C.

DendrogramPurity(T ,C): where T is a binary tree (den-
drogram) with set of leaves L = {1 . . . , L} and C = {c1, . . . , cL}
is the set of known class assignments for each leaf. The Den-
drogramPurity is defined to be the measure obtained from
this random process: pick a leaf ` uniformly at random.
Pick another leaf j in the same class, i.e. c` = cj . Find
the smallest subtree containing ` and j. Measure the frac-
tion of leaves in that subtree which are in the same class,
i.e. c`. The expected value of this fraction is the Dendro-
gramPurity. This measure can be computed efficiently using
a bottom up recursion (without needing to resort to sam-
pling). The overall tree purity is 1 if and only if all leaves
in each class are contained within some pure subtree.

For each leaf of the tree it also useful to measure how well it
fits in with the labels of the leaves in the surrounding sub-
tree. Leaves which do not fit well contribute to decreasing
the overall dendrogram purity. These may highlight un-
usual or misclassified genes, drugs or cell lines. We define
the LeafHarmony of a leaf ` as a measure of how well that
leaf fits in.

LeafHarmony(`,T ,C): Pick a random leaf j in same class
as leaf `, i.e. cj = c`, j 6= `. Find the smallest subtree
containing ` and j. Measure the fraction of leaves in that
subtree which are in class c`. The expected value of this
fraction is the LeafHarmony for ` and it measures the con-
tribution of that leaf to the DendrogramPurity.

For the case of the Rosetta compendium analysis where
there are not clearly defined class labels these measures are
not applicable so we have defined a measure, the LeafDis-
parity, which highlights differences between two hierarchi-
cal clusterings (i.e. dendrograms) of the same data. Intu-
itively, this measures for each leaf of one dedrogram how
similar the surrounding subtree is to the corresponding sub-

tree in the other dendrogram.

Define the correlation between two sets S and R to be
c(S,R) = |S ∩R|/|S ∪R|, where | · | denotes the number of
elements in a set. c(S,R) = 1 iff S = R and c(S,R) = 0 iff
|S ∩R| = ∅. Note that a tree T can be converted into a set-
of-sets representation T = {τ1, . . . , τk}. For each node j in
the tree, τj is the set of the leaves in the subtree descending
from j. (Thus in a binary tree with n leaves contains n− 1
non-leaf internal nodes, so k = 2n− 1).

LeafDisparity(`,T ,T ′): Convert each tree into a set-of-sets
representation. Align the trees: For each set τj in T , find
the set ρk in T ′ such that the correlation is greatest: rj =
maxk c(τj , ρk). For each leaf ` find the average of rj over all
sets that contain `, calling this r̄(`). If the element ` appears
in both T and T ′ let its disparity be the minimum of 1− r̄(`)
in either tree. Thus this measure will be symmetric and
sensitive to disagreement between the hierarchical clustering
given by each tree.

For both data sets the dimensionality of the data was first
reduced by principal components analysis. Empirically, the
first 10 principal components were used. The mixture model
was started with a single component, and 330000 iterations
of Gibbs sampling were performed: the first 33000 steps for
initial “burn-in”, with the remaining 297000 used to gen-
erate 100 roughly independent samples from the posterior
distribution (spaced evenly 2970 steps apart).

Our results show some similarities and but also biologically
significant differences to the published dendrograms of [5]
and [11]. Whilst the aim of this paper is not to provide a
detailed analysis of these data sets, we note that, as a vali-
dation of our method, known associations of tumor cell lines
and drug mechanisms of action in [11] and experimentally
validated associations between genes of known and unknown
function in [5] are reproduced in our clustering.

In the case of the NCI-60 data set, our clustering of tu-
mor cell lines on the basis of gene expression broadly repro-
duces that of [11], whilst the dendrogram produced from our
clustering of cell lines on the basis of drug activity exhibits
greater “purity” than that obtained with a distance metric
of (1 - Pearson correlation coefficient) [11]. We observe that
7/8 melanoma, 6/6 leukaemia and 7/7 breast cell lines clus-
ter together. In our clustering of drugs on the basis of acivity
across the cell lines (A matrix), we note that fluorouracil(5-
FU) clusters together with the platin compunds (tetraplatin,
diaminocyclohexyl-Pt-II), rather than with the RNA syn-
thesis inhibitors, as in [11]. This pattern is repeated in the
clustering of drugs on the basis of correlation between drug
activity and gene expression. Since the platin compounds
and antimetabolites such as fluorouracil(5-FU) and floxuri-
dine(FUdur) at low doses are also DNA synthesis inhibitors
[10], this association appears plausible.

In our clustering of 127 experiments (diverse mutations and
chemical treatments) from the Rosetta data set [5] on the
basis of gene expression patterns, we observe that all of the
uncharacterised ORFs whose function was experimentally
validated by [5] cluster with genes of similar known function.
Our results reveal 5 well defined clusters which correspond
to particular cellular processes: a large group of mutations
which appear to have no consistent phenotype, a cluster
comprising mating and MAPK pathway related proteins, a
cluster of ER proteins related to ergosterol biosynthesis, a



cluster of ribosomal proteins and a cluster of DNA-repair
related genes.
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