
To appear in Jordan, MI, Kearns MJ, and Solla, SA Advances in Neural InformationProcessing Systems 10. MIT Press: Cambridge, MA, 1998.Hierarchical Non-linear Factor Analysisand Topographic MapsZoubin Ghahramani and Geo�rey E. HintonDept. of Computer Science, University of TorontoToronto, Ontario, M5S 3H5, Canadahttp://www.cs.toronto.edu/neuron/fzoubin,hintong@cs.toronto.eduAbstractWe �rst describe a hierarchical, generative model that can beviewed as a non-linear generalisation of factor analysis and canbe implemented in a neural network. The model performs per-ceptual inference in a probabilistically consistent manner by usingtop-down, bottom-up and lateral connections. These connectionscan be learned using simple rules that require only locally avail-able information. We then show how to incorporate lateral con-nections into the generative model. The model extracts a sparse,distributed, hierarchical representation of depth from simpli�edrandom-dot stereograms and the localised disparity detectors inthe �rst hidden layer form a topographic map. When presentedwith image patches from natural scenes, the model develops topo-graphically organised local feature detectors.1 IntroductionFactor analysis is a probabilistic model for real-valued data which assumes thatthe data is a linear combination of real-valued uncorrelated Gaussian sources (thefactors). After the linear combination, each component of the data vector is alsoassumed to be corrupted by additional Gaussian noise. A major advantage of thisgenerative model is that, given a data vector, the probability distribution in thespace of factors is a multivariate Gaussian whose mean is a linear function of thedata. It is therefore tractable to compute the posterior distribution exactly and touse it when learning the parameters of the model (the linear combination matrixand noise variances). A major disadvantage is that factor analysis is a linear modelthat is insensitive to higher order statistical structure of the observed data vectors.One way to make factor analysis non-linear is to use a mixture of factor analysermodules, each of which captures a di�erent linear regime in the data [3]. We canview the factors of all of the modules as a large set of basis functions for describingthe data and the process of selecting one module then corresponds to selectingan appropriate subset of the basis functions. Since the number of subsets underconsideration is only linear in the number of modules, it is still tractable to compute



the full posterior distribution when given a data point. Unfortunately, this mixturemodel is often inadequate. Consider, for example, a typical image that containsmultiple objects. To represent the pose and deformation of each object we wanta componential representation of the object's parameters which could be obtainedfrom an appropriate factor analyser. But to represent the multiple objects we needseveral of these componential representations at once, so the pure mixture idea isnot tenable. A more powerful non-linear generalisation of factor analysis is to havea large set of factors and to allow any subset of the factors to be selected. Thiscan be achieved by using a generative model in which there is a high probability ofgenerating factor activations of exactly zero.2 Recti�ed Gaussian Belief NetsThe Recti�ed Gaussian Belief Net (RGBN) uses multiple layers of units with statesthat are either positive real values or zero [5]. Its main disadvantage is that com-puting the posterior distribution over the factors given a data vector involves Gibbssampling. In general, Gibbs sampling can be very time consuming, but in practice10 to 20 samples per unit have proved adequate and there are theoretical reasonsfor believing that learning can work well even when the Gibbs sampling fails toreach equilibrium [10].We �rst describe the RGBN without considering neural plausibility. Then we showhow lateral interactions within a layer can be used to perform probabilistic infer-ence correctly using locally available information. This makes the RGBN far moreplausible as a neural model than a sigmoid belief net [9, 8] because it means thatGibbs sampling can be performed without requiring units in one layer to see thetotal top-down input to units in the layer below.The generative model for RGBN's consists of multiple layers of units each of whichhas a real-valued unrecti�ed state, yj , and a recti�ed state, [yj]+, which is zero ifyj is negative and equal to yj otherwise. This recti�cation is the only non-linearityin the network.1 The value of yj is Gaussian distributed with a standard deviation�j and a mean, ŷj that is determined by the generative bias, g0j, and the combinede�ects of the recti�ed states of units, k, in the layer above:ŷj = g0j +Xk gkj[yk]+ (1)The recti�ed state [yj]+ therefore has a Gaussian distribution above zero, but allof the mass of the Gaussian that falls below zero is concentrated in an in�nitelydense spike at zero as shown in Fig. 1a. This in�nite density creates problems if weattempt to use Gibbs sampling over the recti�ed states, so, following a suggestionby Radford Neal, we perform Gibbs sampling on the unrecti�ed states.Consider a unit, j, in some intermediate layer of a multilayer RGBN. Supposethat we �x the unrecti�ed states of all the other units in the net. To perform Gibbssampling, we need to stochastically select a value for yj according to its distributiongiven the unrecti�ed states of all the other units. If we think in terms of energyfunctions, which are equal to negative log probabilities (up to a constant), therecti�ed states of the units in the layer above contribute a quadratic energy termby determining ŷj . The unrecti�ed states of units, i, in the layer below contribute aconstant if [yj]+ is 0, and if [yj ]+ is positive they each contribute a quadratic term1The key arguments presented in this paper hold for general nonlinear belief networksas long as the noise is Gaussian; they are not speci�c to the recti�cation nonlinearity.
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Figure 1: a) Probability den-sity in which all the mass of aGaussian below zero has beenreplaced by an in�nitely densespike at zero. b) Schematicof the density of a unit's un-recti�ed state. c) Bottom-up and top-down energy func-tions corresponding to b.because of the e�ect of [yj ]+ on ŷi.E(yj) = (yj � ŷj)22�2j +Xi (yi �Phghi[yh]+)22�2i (2)where h is an index over all the units in the same layer as j including j itself. Termsthat do not depend on yj have been omitted from Eq. 2. For values of yj below zerothere is a quadratic energy function which leads to a Gaussian distribution. Thesame is true for values of yj above zero, but it is a di�erent quadratic (Fig. 1c). TheGaussian distributions corresponding to the two quadratics must agree at yj = 0(Fig. 1b). Because this distribution is piecewise Gaussian it is possible to performGibbs sampling exactly.Given samples from the posterior, the generative weights of a RGBN can be learnedby using the online delta rule to maximise the log probability of the data.2�gji = � [yj]+ (yi � ŷi) (3)The variance of the local Gaussian noise of each unit, �2j , can also be learned byan online rule, ��2j = � [(yj � ŷj)2 � �2j ]: Alternatively, �2j can be �xed at 1 forall hidden units and the e�ective local noise level can be controlled by scaling thegenerative weights.3 The Role of Lateral Connections in Perceptual InferenceIn RGBNs and other layered belief networks, �xing the value of a unit in one layercauses correlations between the parents of that unit in the layer above. One ofthe main reasons why purely bottom-up approaches to perceptual inference haveproven inadequate for learning in layered belief networks is that they fail to takeinto account this phenomenon, which is known as \explaining away."Lee and Seung (1997) introduced a clever way of using lateral connections to handleexplaining away e�ects during perceptual inference. Consider the network shownin Fig. 2. One contribution, Ebelow, to the energy of the state of the network isthe squared di�erence between the unrecti�ed states of the units in one layer, yj,and the top-down expectations generated by the states of units in the layer above.Assuming the local noise models for the lower layer units all have unit variance, and2If Gibbs sampling has not been run long enough to reach equilibrium, the delta rulefollows the gradient of the penalized log probability of the data [10]. The penalty term isthe Kullback-Liebler divergence between the equilibrium distribution and the distributionproduced by Gibbs sampling. Other things being equal, the delta rule therefore adjuststhe parameters that determine the equilibrium distribution to reduce this penalty, thusfavouring models for which Gibbs sampling works quickly.



ignoring biases and constant terms that are una�ected by the states of the unitsEbelow = 12Xj (yj � ŷj)2 = 12Xj (yj �Pk[yk]+gkj)2: (4)Rearranging this expression and setting rjk = gkj and mkl = �Pj gkjglj we getEbelow = 12Xj y2j �Xk [yk]+Xj yjrjk � 12Xk [yk]+Xl [yl]+mkl: (5)This energy function can be exactly implemented in a network with recognitionweights, rjk, and symmetric lateral interactions, mkl. The lateral and recognitionconnections allow a unit, k, to compute how Ebelow for the layer below depends onits own state and therefore they allow it to follow the gradient of E or to performGibbs sampling in E.
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mkl Figure 2: A small segment of a network,showing the generative weights (dashed) andthe recognition and lateral weights (solid)which implement perceptual inference andcorrectly handle explaining away e�ects.Seung's trick can be used in an RGBN and it eliminates the most neurally implau-sible aspect of this model which is that a unit in one layer appears to need to sendboth its state y and the top-down prediction of its state ŷ to units in the layer above.Using the lateral connections, the units in the layer above can, in e�ect, computeall they need to know about the top-down predictions. In computer simulations, wecan simply set each lateral connection mkl to be the dot product �Pj gkjglj . It isalso possible to learn these lateral connections in a more biologically plausible wayby driving units in the layer below with unit-variance independent Gaussian noiseand using a simple anti-Hebbian learning rule. Similarly, a purely local learningrule can learn recognition weights equal to the generative weights. If units at onelayer are driven by unit-variance, independent Gaussian noise, and these in turndrive units in the layer below using the generative weights, then Hebbian learningbetween the two layers will learn the correct recognition weights [5].4 Lateral Connections in the Generative ModelWhen the generative model contains only top-down connections, lateral connectionsmake it possible to do perceptual inference using locally available information. Butit is also possible, and often desirable, to have lateral connections in the generativemodel. Such connections can cause nearby units in a layer to have a priori correlatedactivities, which in turn can lead to the formation of redundant codes and, as wewill see, topographic maps.Symmetric lateral interactions between the unrecti�ed states of units within a layerhave the e�ect of adding a quadratic term to the energy functionEMRF = 12Xk Xl Mkl ykyl; (6)which corresponds to a Gaussian Markov Random Field (MRF). During sampling,this term is simply added to the top-down energy contribution. Learning is moredi�cult. The di�culty stems from the need to know the derivatives of the partitionfunction of the MRF for each data vector. This partition function depends on the



top-down inputs to a layer so it varies from one data vector to the next, even if thelateral connections themselves are non-adaptive. Fortunately, since both the MRFand the top-down prediction de�ne Gaussians over the states of the units in a layer,these derivatives can be easily calculated. Assuming unit variances,�gji = � [yj ]+(yi � ŷi) + [yj]+Xk �M (I +M )�1�ik ŷk! (7)whereM is the MRFmatrix for the layer including units i and k, and I is the identitymatrix. The �rst term is the delta rule (Eq. 3); the second term is the derivativeof the partition function which unfortunately involves a matrix inversion. Sincethe partition function for a multivariate Gaussian is analytical it is also possible tolearn the lateral connections in the MRF.Lateral interactions between the recti�ed states of units add the quadratic term12PkPl Mkl [yk]+[yl]+. The partition function is no longer analytical, so comput-ing the gradient of the likelihood involves a two-phase Boltzmann-like procedure:�gji = ��
[yj]+yi�� � 
[yj]+yi��� ; (8)where h�i� averages with respect to the posterior distribution of yi and yj , and h�i�averages with respect to the posterior distribution of yj and the prior of yi givenunits in the same layer as j. This learning rule su�ers from all the problems ofthe Boltzmann machine, namely it is slow and requires two-phases. However, thereis an approximation which results in the familiar one-phase delta rule that canbe described in three equivalent ways: (1) it treats the lateral connections in thegenerative model as if they were additional lateral connections in the recognitionmodel; (2) instead of lateral connections in the generative model it assumes some�ctitious children with clamped values which a�ect inference but whose likelihoodis not maximised during learning; (3) it maximises a penalized likelihood of themodel without the lateral connections in the generative model.5 Discovering depth in simpli�ed stereogramsConsider the following generative process for stereo pairs. Random dots of uniformlydistributed intensities are scattered sparsely on a one-dimensional surface, and theimage is blurred with a Gaussian �lter. This surface is then randomly placed at oneof two di�erent depths, giving rise to two possible left-to-right disparities betweenthe images seen by each eye. Separate Gaussian noise is then added to the imageseen by each eye. Some images generated in this manner are shown in Fig. 3a.
a b Figure 3: a) Sample data from the stereodisparity problem. The left and right columnof each 2�32 image are the inputs to the leftand right eye, respectively. Periodic bound-ary conditions were used. The value of a pixelis represented by the size of the square, withwhite being positive and black being nega-tive. Notice that pixel noise makes it di�cultto infer the disparity, i.e. the vertical shiftbetween the left and right columns, in someimages. b) Sample images generated by themodel after learning.We trained a three-layer RGBN consisting of 64 visible units, 64 units in the �rsthidden layer and 1 unit in the second hidden layer on the 32-pixel wide stereo



disparity problem. Each of the hidden units in the �rst hidden layer was connectedto the entire array of visible units, i.e. it had inputs from both eyes. The hiddenunits in this layer were also laterally connected in an MRF over the unrecti�edunits. Nearby units excited each other and more distant units inhibited each other,with the net pattern of excitation/inhibition being a di�erence of two Gaussians.This MRF was initialised with large weights which decayed exponentially to zeroover the course of training. The network was trained for 30 passes through a dataset of 2000 images. For each image we used 16 iterations of Gibbs sampling toapproximate the posterior distribution over hidden states. Each iteration consistedof sampling every hidden unit once in a random order. The states after the fourthiteration of Gibbs sampling were used for learning, with a learning rate of 0.05 anda weight decay parameter of 0.001. Since the top level of the generative processmakes a discrete decision between left and right global disparity we used a trivialextension of the RGBN in which the top level unit saturates both at 0 and 1.
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cFigure 4: Generative weights of a three-layered RGBN after being trained on the stereodisparity problem. a) Weights from the top layer hidden unit to the 64 middle-layer hiddenunits. b) Biases of the middle-layer hidden units, and c) weights from the hidden units tothe 2� 32 visible array.Thirty-two of the hidden units learned to become local left-disparity detectors, whilethe other 32 became local right-disparity detectors (Fig. 4c). The unit in the secondhidden layer learned positive weights to the left-disparity detectors in the layerbelow, and negative weights to the right detectors (Fig. 4a). In fact, the activityof this top unit discriminated the true global disparity of the input images with99% accuracy. A random sample of images generated by the model after learning isshown in Fig. 3b. In addition to forming a hierarchical distributed representationof disparity, units in the hidden layer self-organised into a topographic map. TheMRF caused high correlations between nearby units early in learning, which inturn resulted in nearby units learning similar weight vectors. The emergence oftopography depended on the strength of the MRF and on the speed with which itdecayed. Results were relatively insensitive to other parametric changes.We also presented image patches taken from natural images [1] to a network withunits in the �rst hidden layer arranged in laterally-connected 2D grid. The networkdeveloped local feature detectors, with nearby units responding to similar features(Fig. 5). Not all units were used, but the unused units all clustered into one area.6 DiscussionClassical models of topography formation such as Kohonen's self-organising map [6]and the elastic net [2, 4] can be thought of as variations on mixture models whereadditional constraints have been placed to encourage neighboring hidden units tohave similar generative weights. The problem with a mixture model is that it cannothandle images in which there are several things going on at once. In contrast, we
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