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Learning Nonlinear Dynamical Systemsusing an EM AlgorithmZoubin Ghahramani and Sam T. RoweisGatsby Computational Neuroscience UnitUniversity College LondonLondon WC1N 3AR, U.K.http://www.gatsby.ucl.ac.uk/AbstractThe Expectation{Maximization (EM) algorithm is an iterative pro-cedure for maximum likelihood parameter estimation from datasets with missing or hidden variables [2]. It has been applied tosystem identi�cation in linear stochastic state-space models, wherethe state variables are hidden from the observer and both the stateand the parameters of the model have to be estimated simulta-neously [9]. We present a generalization of the EM algorithm forparameter estimation in nonlinear dynamical systems. The \expec-tation" step makes use of Extended Kalman Smoothing to estimatethe state, while the \maximization" step re-estimates the parame-ters using these uncertain state estimates. In general, the nonlinearmaximization step is di�cult because it requires integrating out theuncertainty in the states. However, if Gaussian radial basis func-tion (RBF) approximators are used to model the nonlinearities,the integrals become tractable and the maximization step can besolved via systems of linear equations.1 Stochastic Nonlinear Dynamical SystemsWe examine inference and learning in discrete-time dynamical systems with hiddenstate xt, inputs ut, and outputs yt.1 The state evolves according to stationarynonlinear dynamics driven by the inputs and by additive noisext+1 = f(xt; ut) + w (1)1All lowercase characters (except indices) denote vectors. Matrices are represented byuppercase characters.



where w is zero-mean Gaussian noise with covariance Q. 2 The outputs are non-linearly related to the states and inputs byyt = g(xt; ut) + v (2)where v is zero-mean Gaussian noise with covariance R. The vector-valued nonlin-earities f and g are assumed to be di�erentiable, but otherwise arbitrary.Models of this kind have been examined for decades in various communities. Mostnotably, nonlinear state-space models form one of the cornerstones of modern sys-tems and control engineering. In this paper, we examine these models within theframework of probabilistic graphical models and derive a novel learning algorithmfor them based on EM. With one exception,3 this is to the best of our knowledgethe �rst paper addressing learning of stochastic nonlinear dynamical systems of thekind we have described within the framework of the EM algorithm.The classical approach to system identi�cation treats the parameters as hidden vari-ables, and applies the Extended Kalman Filtering algorithm (described in section 2)to the nonlinear system with the state vector augmented by the parameters [5].4This approach is inherently on-line, which may be important in certain applications.Furthermore, it provides an estimate of the covariance of the parameters at eachtime step. In contrast, the EM algorithm we present is a batch algorithm and doesnot attempt to estimate the covariance of the parameters.There are three important advantages the EM algorithm has over the classical ap-proach. First, the EM algorithm provides a straightforward and principled methodfor handing missing inputs or outputs. Second, EM generalizes readily to morecomplex models with combinations of discrete and real-valued hidden variables.For example, one can formulate EM for a mixture of nonlinear dynamical systems.Third, whereas it is often very di�cult to prove or analyze stability within theclassical on-line approach, the EM algorithm is always attempting to maximize thelikelihood, which acts as a Lyapunov function for stable learning.In the next sections we will describe the basic components of the learning algorithm.For the expectation step of the algorithm, we infer the conditional distribution of thehidden states using Extended Kalman Smoothing (section 2). For the maximizationstep we �rst discuss the general case (section 3) and then describe the particularcase where the nonlinearities are represented using Gaussian radial basis function(RBF; [6]) networks (section 4).2 Extended Kalman SmoothingGiven a system described by equations (1) and (2), we need to infer the hiddenstates from a history of observed inputs and outputs. The quantity at the heartof this inference problem is the conditional density P (xtju1; : : : ; uT ; y1; : : : ; yT ), for1 � t � T , which captures the fact that the system is stochastic and therefore ourinferences about x will be uncertain.2The Gaussian noise assumption is less restrictive for nonlinear systems than for linearsystems since the nonlinearity can be used to generate non-Gaussian state noise.3The authors have just become aware that Briegel and Tresp (this volume) have appliedEM to essentially the same model. Briegel and Tresp's method uses multilayer perceptrons(MLP) to approximate the nonlinearities, and requires sampling from the hidden states to�t the MLP. We use Gaussian radial basis functions (RBFs) to model the nonlinearities,which can be �t analytically without sampling (see section 4).4It is important not to confuse this use of the Extended Kalman algorithm, to simul-taneously estimate parameters and hidden states, with our use of EKS, to estimate justthe hidden state as part of the E step of EM.



For linear dynamical systems with Gaussian state evolution and observation noises,this conditional density is Gaussian and the recursive algorithm for computing itsmean and covariance is known as Kalman smoothing [4, 8]. Kalman smoothing isdirectly analogous to the forward{backward algorithm for computing the conditionalhidden state distribution in a hidden Markov model, and is also a special case ofthe belief propagation algorithm.5For nonlinear systems this conditional density is in general non-Gaussian and canin fact be quite complex. Multiple approaches exist for inferring the hidden statedistribution of such nonlinear systems, including sampling methods [7] and varia-tional approximations [3]. We focus instead in this paper on a classic approach fromengineering, Extended Kalman Smoothing (EKS).Extended Kalman Smoothing simply applies Kalman smoothing to a local lineariza-tion of the nonlinear system. At every point ~x in x-space, the derivatives of thevector-valued functions f and g de�ne the matrices, A~x � @f@x ���x=~x and C~x � @g@x ���x=~x,respectively. The dynamics are linearized about x̂t, the mean of the Kalman �lterstate estimate at time t:xt+1 = f(x̂t; ut) +Ax̂t (xt � x̂t) + w: (3)The output equation (2) can be similarly linearized. If the prior distribution of thehidden state at t = 1 was Gaussian, then, in this linearized system, the conditionaldistribution of the hidden state at any time t given the history of inputs and outputswill also be Gaussian. Thus, Kalman smoothing can be used on the linearized systemto infer this conditional distribution (see �gure 1, left panel).3 LearningThe M step of the EM algorithm re-estimates the parameters given the observedinputs, outputs, and the conditional distributions over the hidden states. For themodel we have described, the parameters de�ne the nonlinearities f and g, and thenoise covariances Q and R.Two complications arise in the M step. First, it may not be computationally fea-sible to fully re-estimate f and g. For example, if they are represented by neuralnetwork regressors, a single full M step would be a lengthy training procedure usingbackpropagation, conjugate gradients, or some other optimization method. Alter-natively, one could use partial M steps, for example, each consisting of one or a fewgradient steps.The second complication is that f and g have to be trained using the uncertain stateestimates output by the EKS algorithm. Consider �tting f , which takes as inputsxt and ut and outputs xt+1. For each t, the conditional density estimated by EKS isa full-covariance Gaussian in (xt; xt+1)-space. So f has to be �t not to a set of datapoints but instead to a mixture of full-covariance Gaussians in input-output space(Gaussian \clouds" of data). Integrating over this type of noise is non-trivial foralmost any form of f . One simple but ine�cient approach to bypass this problemis to draw a large sample from these Gaussian clouds of uncertain data and then �tf to these samples in the usual way. A similar situation occurs with g.In the next section we show how, by choosing Gaussian radial basis functions tomodel f and g, both of these complications vanish.5The forward part of the Kalman smoother is the Kalman �lter.



4 Fitting Radial Basis Functions to Gaussian CloudsWe will present a general formulation of an RBF network from which it should beclear how to �t special forms for f and g. Consider the following nonlinear mappingfrom input vectors x and u to an output vector z:z = IXi=1 hi �i(x) +Ax+Bu+ b+ w; (4)where w is a zero-mean Gaussian noise variable with covariance Q. For example,one form of f can be represented using (4) with the substitutions x xt, u ut,and z  xt+1; another with x  (xt; ut), u  ;, and z  xt+1. The parametersare: the coe�cients of the I RBFs, hi; the matrices A and B multiplying inputsx and u, respectively; and an output bias vector b. Each RBF is assumed to be aGaussian in x-space, with center ci and width given by the covariance matrix Si:�i(x) = j2�Sij�1=2 exp��12(x� ci)>S�1i (x� ci)� : (5)The goal is to �t this model to data (u; x; z). The complication is that the dataset comes in the form of a mixture of Gaussian distributions. Here we show how toanalytically integrate over this mixture distribution to �t the RBF model.Assume the data set is:P (x; z; u) = 1J Xj Nj(x; z) �(u� uj): (6)That is, we observe samples from the u variables, each paired with a Gaussian\cloud" of data, Nj , over (x; z). The Gaussian Nj has mean �j and covariancematrix Cj .Let ẑ�(x; u) = PIi=1 hi �i(x) + Ax + Bu + b, where � is the set of parameters� = fh1 : : : hI ; A;B; bg. The log likelihood of a single data point under the modelis: �12 [z � ẑ�(x; u)]>Q�1 [z � ẑ�(x; u)]� 12 ln jQj+ const:The maximum likelihood RBF �t to the mixture of Gaussian data is obtained byminimizing the following integrated quadratic form:min�;Q 8<:Xj Zx ZzNj(x; z) [z � ẑ�(x; uj)]>Q�1 [z � ẑ�(x; uj)] dx dz + J ln jQj9=; : (7)We rewrite this in a slightly di�erent notation, using angled brackets h�ij to denoteexpectation over Nj , and de�ning� � [h>1 h>2 : : : h>I A> B> b>]>� � [�1(x) �2(x) : : : �I(x) x u 1] :Then, the objective can be writtenmin�;Q 8<:Xj 
(z � � �)>Q�1(z � � �)�j + J ln jQj9=; : (8)



Taking derivatives with respect to �, premultiplying by �Q�1, and setting to zerogives the linear equations Pjh(z � ��)�>ij = 0, which we can solve for � and Q:�̂ = 0@Xj hz�>ij1A0@Xj h��>ij1A�1 ; Q̂ = 1J 0@Xj hzz>ij � �̂Xj h�z>ij1A : (9)In other words, given the expectations in the angled brackets, the optimal parame-ters can be solved for via a set of linear equations. In appendix A we show that theseexpectations can be computed analytically. The derivation is somewhat laborious,but the intuition is very simple: the Gaussian RBFs multiply with the Gaussiandensities Nj to form new unnormalized Gaussians in (x; y)-space. Expectations un-der these new Gaussians are easy to compute. This �tting algorithm is illustratedin the right panel of �gure 1.
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Figure 1: Illustrations of the E and M steps of the algorithm. The left panel showsthe information used in Extended Kalman Smoothing (EKS), which infers the hiddenstate distribution during the E-step. The right panel illustrates the regression techniqueemployed during the M-step. A �t to a mixture of Gaussian densities is required; ifGaussian RBF networks are used then this �t can be solved analytically. The dashed lineshows a regular RBF �t to the centres of the four Gaussian densities while the solid lineshows the analytic RBF �t using the covariance information. The dotted lines below showthe support of the RBF kernels.5 ResultsWe tested how well our algorithm could learn the dynamics of a nonlinear systemby observing only its inputs and outputs. The system consisted of a single input,state and output variable at each time, where the relation of the state from one timestep to the next was given by a tanh nonlinearity. Sample outputs of this systemin response to white noise are shown in �gure 2 (left panel).We initialized the nonlinear model with a linear dynamical model trained withEM, which in turn we initialized with a variant of factor analysis. The modelwas given 11 RBFs in xt-space, which were uniformly spaced within a range whichwas automatically determined from the density of points in xt-space. After theinitialization was over, the algorithm discovered the sigmoid nonlinearity in thedynamics within less than 10 iterations of EM (�gure 2, middle and right panels).Further experiments need to be done to determine how practical this method willbe in real domains.
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Figure 2: (left): Data set used for training (�rst half) and testing (rest), which consistsof a time series of inputs, ut (a), and outputs yt (b). (middle): Representative plots oflog likelihood vs iterations of EM for linear dynamical systems (dashed line) and nonlineardynamical systems trained as described in this paper (solid line). Note that the actuallikelihood for nonlinear dynamical systems cannot generally be computed analytically;what is shown here is the approximate likelihood computed by EKS. The kink in the solidcurve comes when initialization with linear dynamics ends and the nonlinearity starts tobe learned. (right): Means of (xt; xt+1) Gaussian posteriors computed by EKS (dots),along with the sigmoid nonlinearity (dashed line) and the RBF nonlinearity learned bythe algorithm. At no point does the algorithm actually observe (xt; xt+1) pairs; these areinferred from inputs, outputs, and the current model parameters.6 DiscussionThis paper brings together two classic algorithms, one from statistics and anotherfrom systems engineering, to address the learning of stochastic nonlinear dynam-ical systems. We have shown that by pairing the Extended Kalman Smoothingalgorithm for state estimation in the E-step, with a radial basis function learningmodel that permits analytic solution of the M-step, the EM algorithm is capable oflearning a nonlinear dynamical model from data. As a side e�ect we have derivedan algorithm for training a radial basis function network to �t data in the form ofa mixture of Gaussians.Our initial approach has three potential limitations. First, the M-step presenteddoes not modify the centres or widths of the RBF kernels. It is possible to computethe expectations required to change the centres and widths, but it requires resort-ing to a partial M-step. For low dimensional state spaces, �lling the space withpre-�xed kernels is feasible, but this strategy needs exponentially many RBFs inhigh dimensions. Second, EM training can be slow, especially if initialized poorly.Understanding how di�erent hidden variable models are related can help devisesensible initialization heuristics. For example, for this model we used a nested ini-tialization which �rst learned a simple linear dynamical system, which in turn wasinitialized with a variant of factor analysis. Third, the method presented here learnsfrom batches of data and assumes stationary dynamics. We have recently extendedit to handle online learning of nonstationary dynamics.The belief network literature has recently been dominated by two methods forapproximate inference, Markov chain Monte Carlo [7] and variational approxima-tions [3]. To our knowledge this paper is the �rst instance where extended Kalmansmoothing has been used to perform approximate inference in the E step of EM.While EKS does not have the theoretical guarantees of variational methods, its sim-plicity has gained it wide acceptance in the estimation and control literatures as amethod for doing inference in nonlinear dynamical systems. We are now exploringgeneralizations of this method to learning nonlinear multilayer belief networks.



AcknowledgementsZG would like to acknowledge the support of the CITO (Ontario) and the Gatsby Char-itable Fund. STR was supported in part by the NSF Center for Neuromorphic SystemsEngineering and by an NSERC of Canada 1967 Award.A Expectations Required to Fit the RBFsThe expectations we need to compute for equation 9 are hxij, hzij , hxx>ij , hxz>ij , hzz>ij ,h�i(x)ij, hx �i(x)ij , hz �i(x)ij, h�i(x) �`(x)ij .Starting with some of the easier ones that do not depend on the RBF kernel �:hxij = �xj hzij = �zjhxx>ij = �xj �x;Tj + Cxxj hxz>ij = �xj �z;Tj + Cxzjhzz>ij = �zj�z;Tj + CzzjObserve that when we multiply the Gaussian RBF kernel �i(x) (equation 5) and Nj weget a Gaussian density over (x; z) with mean and covariance�ij = Cij �C�1j �j + � S�1i ci0 �� and Cij = �C�1j + � S�1i 00 0 ���1 ;and an extra constant (due to lack of normalization),�ij = (2�)�dx=2jSij�1=2jCj j�1=2jCij j1=2 expf��ij=2gwhere �ij = c>i S�1i ci + �>j C�1j �j � �>ijC�1ij �ij . Using �ij and �ij , we can evaluate theother expectations:h�i(x)ij = �ij ; hx �i(x)ij = �ij�xij ; and hz �i(x)ij = �ij�zij :Finally, h�i(x) �`(x)ij = (2�)�dx jCj j�1=2jSij�1=2jS`j�1=2jCi`j j1=2 expf�
i`j=2g, whereCi`j = �C�1j + � S�1i + S�1` 00 0 ���1 and �i`j = Ci`j �C�1j �j + � S�1i ci + S�1` c`0 �� ;and 
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