
CLUSTERING PROTEIN SEQUENCE AND STRUCTURESPACE WITH INFINITE GAUSSIAN MIXTURE MODELSA. DUBEY, S. HWANG, C. RANGELKek Graduate Institute, 535 Watson Drive,Claremont CA 91711, USAC.E. RASMUSSENMax Plank Institute for Biologial Cybernetis, Spemann Strasse 3872076 Tuebingen, GermanyZ. GHAHRAMANIGatsby Computational Neurosiene Unit, University College London,17 Queen Square, London, WC1N 3AR, UKD.L.WILDKek Graduate Institute, 535 Watson Drive,Claremont CA 91711, USAAbstratWe desribe a novel approah to the problem of automatially lus-tering protein sequenes and disovering protein families, subfamilieset., based on the theory of in�nite Gaussian mixtures models. Thismethod allows the data itself to ditate how many mixture omponentsare required to model it, and provides a measure of the probability thattwo proteins belong to the same luster. We illustrate our methods withappliation to three data sets: globin sequenes, globin sequenes withknown three-dimensional strutures and G-protein oupled reeptor se-quenes. The onsisteny of the lusters indiate that our method isproduing biologially meaningful results, whih provide a very good in-diation of the underlying families and subfamilies. With the inlusion ofseondary struture and residue solvent aessibility information, we ob-tain a lassi�ation of sequenes of known struture whih both reetsand extends their SCOP lassi�ations.1 IntrodutionThe lustering of protein sequenes into families and superfamilies is aommon approah for both omparative genomis and the predition ofprotein funtion. With the advent of strutural genomis projets, thelustering of protein sequenes with those of known struture has alsobeen proposed as a method of target seletion for struture determina-tion. Newly determined protein strutures must then be lassi�ed, both1



to assess their novelty, and in the ase of proteins of unknown funtion,as a �rst step in funtional annotation.Most methods for lustering protein sequenes begin with an all-against-all pairwise similarity searh and use the pairwise sore as a mea-sure of similarity of the two sequenes. A variety of approahes have beendesribed to onstrut lusters from these sores: GENERAGE 1 usesreursive single linkage hierahial lustering, and PROTOMAP 2 on-struts hierarhial lusters in a similar manner but using the means ofall pairwise sores. SYSTERS3 uses heuristis derived from set-theoretionsiderations to obtain a set of disjoint lusters. Abasal and Valenia4 desribe a method for lustering protein families whih uses the Nutalgorithm derived from graph theory. All these methods rely on the set-ting of some sore theshold to distinguish members of a partiular lusterfrom non-members, making the determination of the number of lustersarbitrary and subjetive. Approahes based on single linkage hierarhiallustering an give results whih are highly dependent on small hangesto the data (suh as adding or removing a single sequene). Moreover,non-probabilisti approahes do not provide a measure of unertaintyabout the lustering, make it diÆult to ompute the preditive qualityof the lustering and to make omparisons between lusterings based ondi�erent model assumptions (e.g. numbers of lusters, shapes of lus-ters, et). Krogh et al. 5 provided an alternative probabilisti approahwhih used hidden Markov models (HMMs) to luster protein sequenesfrom the globin family into subfamilies. They �t a mixture of HMMs(whih is itself a speial kind of HMM) using maximum likelihood meth-ods. The results of these experiments were promising for this partiularexample, yielding lusters that orrespond to known globin subfamilies.Little work has followed up on this area. Methods for automatiallylustering sequenes into hypothesized lasses will be inreasingly usefulas amounts of sequene and strutural data ontinue to grow.An important issue that must be addressed in any lustering methodis the question of how many lusters to use. Bayesian statistis an pro-vide a solution to model seletion questions of this kind (e.g.6;7). Withinthe Bayesian framework, an elegant alternative approah is to assumethat the data was in fat generated from an in�nite number of Gaussianlusters. Any atual lusters in the protein sequene data will surelynot be Gaussian distributeda. In�nite mixtures are a sensible way toapture the fat that we don't really believe that protein sequene datais well modeled by a �nite number of Gaussians. An in�nite Gaussianmixture model an readily model a �nite number of non-Gaussian lus-ters. Finally, in an in�nite Gaussian mixture model there is no need toaWe disuss below how one an derive vetorial representations of sequenes so thatquestions about Gaussianity are well-de�ned.2



make arbitrary hoies about how many lusters there are in the data;nevertheless, after modeling one an ask questions suh as how probableit is that two protein sequenes or strutures belong to the same luster?We desribe a novel approah to the problem of automatially lus-tering protein sequenes and disovering protein families, subfamilieset. based on the theory of in�nite mixtures 8. This theory is basedon the observation that the mathematial limit of an in�nite number ofomponents in an ordinary �nite mixture model (i.e. lustering model)orresponds to a Dirihlet proess prior 9;10;8. Suh a Dirihlet proessprior allows the data itself to ditate how many mixture omponents arerequired to model it. That is, a diverse family may require several ompo-nents whereas a simpler family may require only one. Although in theorythe in�nite mixture has an in�nite number of parameters, surprisingly,it is possible to sample from these in�nite mixture models eÆientlysine only the parameters of a few of the models need to be represented.The theory of in�nite mixture models is laid out by Rasmussen8, whoshowed that the proedure works e�etively with mixtures of Gaussians.It has sine been applied to the lustering of gene expression pro�les byMedvedovi and Sivaganesan 11.2 In�nite Gaussian Mixture ModelsOne ommonly used omputational method of non-hierarhial luster-ing based on measuring Eulidean distane between feature vetors isgiven by the k-means algorithm. However, the k-means algorithm isinadequate for desribing lusters of unequal size or shape. A gener-alization of k-means an be derived from the theory of maximum like-lihood estimation of Gaussian mixture models12. In a Gaussian mix-ture model, the data (e.g. features of protein sequenes or gene expres-sion pro�les whih an be arranged into p-dimensional vetors y) is as-sumed to have been generated from a �nite number (k) of Gaussians,P (y) = Pkj=1 �jPj(y) where �j is the mixing proportion for lusterj (fration of population belonging to luster j; Pj �j = 1; �j � 0)and Pj(y) is a multivariate Gaussian distribution with mean �j and o-variane matrix �j . The lusters an be found by �tting the maximumlikelihood Gaussian mixture model as a funtion of the set of parameters� = f�j ; �j ;�jgkj=1 using the EM algorithm 12. Eulidean distane or-responds to assuming that the �j are all equal multiples of the identitymatrix.Starting from a �nite mixture model (2), we de�ne a prior overthe mixing proportion parameters �. The natural onjugate prior formixing proportions is the symmetri Dirihlet distribution: P (�j�) =�(�)�(�=k)k Qkj=1 ��=k�1j where � ontrols the distribution of the prior weight3



assigned to eah luster, and � is the gamma funtion.We then expliitly inlude indiator variables i for eah data point(i.e. protein sequene) whih an take on integer values i = j, j 2f1; : : : ; kg, orresponding to the hypothesis that data point i belongsto luster j. Under the mixture model, by de�nition, the prior proba-bility is proportional to the mixing proportion: P (i = jj�) = �j . Akey observation is that we an ompute the onditional probability ofone indiator variable given the setting of all the other indiator vari-ables after integrating over all possible settings of the mixing proportionparameters:P (i = jj�i; �)=Z P (i = jj�i; �)P (�j�i; �) d�= n�i;j + �=kn� 1 + � (1)where �i is the setting of all indiator variables exept the ith, n isthe total number of data points, and n�i;j is the number of data pointsbelonging to lass j not inluding i. By Bayes rule,P (�j�i; �) = P (�j�)=P (�ij�)Ỳ6=i P (`j�) (2)whih is also a Dirihlet distribution, making it possible to perform theabove integral analytially. We now an take the limit of k going toin�nity, obtaining a Dirihlet Proess with di�ering onditional proba-bilities for lusters with and without data: for lusters where n�i;j > 0:p(i = jj�i; �) = n�i;jn�1+� , for all other lusters ombined: p(i 6=i0 for all i0 6= ij�i; �) = �n�1+� . This shows that the probabilitesare proportional to the oupation numbers, n�i;j . Using these on-ditional probabilities one an Gibbs sample from the indiator variableseÆiently, even though the model has in�nitely many Gaussian lusters.Having integrated out the mixing proportions one an also Gibbs sam-ple from all of the remaining parameters of the model, i.e. f�;�gj . Thedetails of these proedures an be found in Rasmussen (2000)8 .We have used in�nite Gaussian mixtures to model protein sequenedata with the intention of answering queries of the kind: what is theprobability that two proteins belong to the same luster? Unlike pre-vious methods based on a single lustering of the data, this approahomputes this probability while taking into aount all soures of modelunertainty (inluding number of lusters and loation of lusters). Weuse the probability pij that two proteins i and j belong to the same lus-ter in the in�nite mixture model as a measure of the similarity of theseprotein sequenes. Conversely 1 � pij de�nes a dissimilarity measurewhih for the purposes of visualization an be input to one of the stan-dard linkage algorithms used for hierarhial lustering (see Figure 3).4



We illustrate our methods with appliation to three data sets: globin se-quenes, globin sequenes with known three-dimensional strutures andG-protein oupled reeptor sequenes.3 MethodsTo be able to luster protein sequenes, we need to be able to obtain avetor representation of the protein in a suitable metri spae. We usethe Fisher sore vetor respresentation desribed by Jaakkola et al 13,whih provides an appropriate measure of similarity between sequenes.The Fisher sore vetor for a partiular protein X is obtained by eval-uating the derivative of the log-likelihood with respet to a vetor ofparameters (�) of a hidden Markov model (HMM) trained on the set ofprotein sequenes: UX = r� log P (Xj�). Eah omponent of the vetorUX is the derivative of the log-likelihood for the sequene X with respetto a partiular parameter (the emission probabilities of the HMM).In the work desribed below, we �rst train an HMM on the set ofprotein sequenes of interest and then alulate a Fisher sore vetor asdesribed above. In the ase of sequenes of known struture, we usethe Bayesian network model of Raval et al. 14, whih an be thought ofas an extension of a hidden Markov model to inorporate multiple ob-servations of primary sequene, seondary struture and residue solventaessibility, alulated from the three-dimensional oordinates by theDSSP method of Kabsh and Sander 15. For all data sets the dimension-ality of the Fisher sore vetor was then redued by prinipal omponentsanalysis and we used this redued dimension vetor as the y vetor inputinto the in�nite Gaussian mixture model. We used the �rst 10 prinipalomponents, whih aptured most of the variane in the UX vetors.The mixture model was initialized with all data belonging to a singleGaussian, and a large number of Gibbs sampling sweeps are performed,updating all variables and parameters, i.e. ff�j ;�jg; fig; �g, in turn bysampling from the onditional distributions derived in the previous se-tions and desribed in more detail in Rasmussen (2000)8. We typiallyrun the hain for 110,000 iterations, disarding the initial 11,000 stepsas \burn-in" and keeping every 1000th step after that, generating 100roughly independent samples from the posterior distribution.4 Results4.1 Globin SequenesThe mixture of HMMs method of Krogh et al 5 disovered 7 lusters ina set of 628 globin sequenes, orresponding to:5



1. Class 1 233 sequenes: prinipally all �, a few � ( an �-type hainof mammalian embryoni hemoglobin), �=�0 (the ounterpart ofthe � hain in major early embryoni hemoglobin P), and � � 1hains (early erythroyte �-like).2. Class 2 232 sequenes: almost all �, a few Æ (�-like), � (�-typefound in early embryos),  (omprises fetal hemoglobin F in ombi-nation with two � hains), � (major early embryoni �-type hain)and � hains (embryoni �-type hain).3. Class 3 71 myoglobins.4. Class 4 58 sequenes. The 13 highest soring in this luster wereleghemoglobins. This lass ontained a variety of sequenes inlud-ing 3 non-globins in the original data set.5. Class 5 19 sequenes. Midge globins.6. Class 6 8 sequenes. Globins from agnatha (jawless �sh).7. Class 7 7 sequenes. varied.Our results, using an updated version of the same data set (630globin sequenes, distributed with the HMMER2 software pakage) isshown in Figure 1. In this plot we show the number of times, out of100 samples, that the indiator variables for two sequenes were equal.As shown above, this may be interpreted as the probability pij thattwo proteins i and j belong to the same luster. It is evident thatour model has disovered a larger number of lusters that the methodof Krogh et al.5. The granularity of this lustering is determined bythe data and not by some user-de�ned threshold. Large solid bloks ofolor along the diagonal orrespond to homogeneous lusters. Note thatin our method, sequenes may belong to more than one luster witha de�ned probability: o�-diagonal elements indiate 'ross-lustering'.For omparison, we also lustered the sequenes using BLASTCLUST,whih lusters the sequenes aording to a sequene identity thresholdand a single linkage algorithm. With a 90% sequene identity thresh-old, 261 lusters were obtained. The �rst large homogeneous lusterin Figure 1 (bottom right hand orner) omprises 37 hemoglobin � se-quenes plus two Æ sequenes (HBD COLPO and HBD PANTR) (Figure1). Although a number of these sequenes are ontained within the sameluster in the BLASTCLUST output, indiating that they have > 90%sequene identity, we note that the lusters are by no means idential.The BLASTCLUST luster ontaining many of these hemoglobin � se-quenes also ontains 8 hemoglobin Æ sequenes and one Hemoglobin�-2 hain (HBB2 PANLE). Figure 1 indiates that all sequenes withinthis luster also 'ross-luster' with another group of � sequenes with aprobability of around 20-30%. The next luster from the bottom right6



(Figure 1) ontains all � sequenes and ross lusters with another groupof � sequenes with a probability of around 40-50%. Although a detailedanalysis of these results is beyond the sope of this paper, we identifyat least 11 distint � and 13 distint � lusters (plus some additionalsmaller ones). Although some of the variant sequenes luster with �and � sequenes, we identify a number of lusters omposed only ofvariant sequenes: 3 lusters omprising only , � and � sequenes, oneluster of Æ and one luster of � sequenes. We identify 3 distint lustersof leghemoglobins and 1 luster of midge hemoglobins (6 sequenes), asmall luster of �sh hemoglobins and a small luster omprising lamand earthworm sequenes. Myoglobins, whih Krogh et al (1994) foundin one luster, form 10 distint lusters, mainly omprising proteins fromrelated speies. BLASTCLUST groups these into 6 lusters plus 9 single-tons at a 90% identity theshold. We identify only 11 singletons (proteinswhih never luster with another), none of whih are myoglobins.
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Figure 1: Clustering of the 630 globin sequenes. The gray sale indiates the number oftimes, out of 100 samples, that the indiator variables for two sequenes were equal, or theprobability that two sequenes belong to the same lusterThese results indiate that our method is apable of produing bio-logially meaningful results and orretly lassi�es the main globin sub-families. In addition, it provides a �ner level of lustering within thesesubfamilies than either the use of BLAST alignments and sequene iden-tity or the method of Krogh et al.54.2 Globin Sequenes of Known StrutureFor this experiment we obtained globin sequenes from the StruuralClassi�ation of Proteins (SCOP) database 16 using the ASTRAL re-7



soure b. Sequenes with > 95% sequene identity were exluded, leav-ing 91 proteins. Aording to the SCOP lassi�ation, these onprisedrepresentatives of 4 globin strutural subfamilies (a.1.1.1: trunatedhemoglobins (4 sequenes) , a.1.1.2: glyera globins, myoglobins, hemoglobinI, avohemoglobins, leghemoglobins, hemoglobin � and � hains, a.1.1.3:phyoyanins, allophyoyanins, phyoerythrins and a.1.1.4: nerve tis-sue mini-hemoglobin (1 sequene) ). The sequenes were lustered usingfeature vetors derived from two models: a sequene-only HMM and aBayesian net model (strutural HMM). The results are shown in Figure2 and Figure 3.The results from the sequene only lustering (Figure 2 left) show asimilar pattern to those obtained with the 630 globin sequenes. Fairlyhomogeneous lusters are mainly omposed of related sequenes, eg: �hemoglobin hains, � hemoglobin hains, myoglobins, phyoyanin a andb, phyoerythrin and b and allophyoyanin a and b hains (whih allform separate lusters). Glyera globins forms a separate luster, asdo leghemoglobins. Three or four heterogeneous (loosely assoiated)lusters are observed, whih inlude trunated hemoglobins, hemoglobinI's, dehaloperoxidase et.The results from the model whih inludes seondary struture andresidue aessibility information shows fewer lusters; 12 in all, plus twosingletons (dehaloperoxidase and pig roundworm hemoglobin, domain 1)(Figure 2 right). Again � and � hemoglobin hains form distint andfairly homogeneous lusters, as do the myoglobins, with the exeptionof 1MYT (this is a myoglobin whih laks the D helix), whih lustersmore strongly with � hemoglobins, as well as weakly with the myoglobinluster, and 1MBA (a mollus myoglobin), whih lusters with lamhemoglobins and glyera globins from bloodworms. Phyoyanins, allo-phyoyanins and phyoerythrins (whih are all lassi�ed by SCOP intothe same subfamily a.1.1.3) form two distint large joint lusters. Withinthese lusters one an detet subfamilies orresponding to the allophyo-yanins, phyoerythrins and phyoyanins, whih luster amongst them-selves with a higher probability. Leghemoglobins luster strongly witha single non-symbioti plant hemoglobin from rie, and weakly with alam hemoglobin I. Trunated hemoglobins, whih SCOP lassi�es intoa di�erent subfamily (a.1.1.1), form two distint lusters, and the solemember of subfamily a.1.1.4 (nerve tissue mini-hemoglobin), lusterswith 1CH4 (himeri syntheti hemoglobin beta-alpha). In omparison,13 lusters are produed with BLASTCLUST only at a 10% sequeneidentity threshold. These omprise a single luster for a.1.1.1, nine sep-arate lusters for a.1.1.2 (inluding 4 singletons), a single luster fora.1.1.3 and a singleton for a.1.1.4. Our results, whih do not require abhttp://astral.stanford.edu 8



prede�ned threshold to be spei�ed, provide a reetion the underlyingSCOP lassi�ations but also suggest that a further level of subfamilysubdivision is possible.
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Phycocyanins Figure 3: Dendrogram resresentation of the lustering of the 91 SCOP globin sequenesshown in Figure 2:left, by sequene information only; right, with the inlusion of struturalinformation.4.3 G-Coupled Protein Reeptors (GPCRs)Aording to the GPCRDB lassi�ation system 17, the G-protein ou-pled reeptor (GPCR) superfamily is lassi�ed into 5 major lasses: ClassA (related to rhodopsin and adrenergi reeptors), Class B (related toalitonin and PTH/PTHrP reeptors), Class C (related to metatropi9



reeptors), Class D (related to pheromone reeptors) and Class E (re-lated to AMP reeptors). The lasses share � 20% sequene identityover predited transmembrane helies 17. Eah lass is further dividedinto level 1 subfamilies (eg: Amine, Peptide, Opsin et. for Class A)and further into Level 2 subfamilies (Musarini, Histamine, Serotoninet. for the Amine subfamily). A number of putative GPCRs have noidenti�ed natural ligand and are dubbed 'orphan' reeptors. The se-quene diversity of the GPCR lasses makes subfamily lassi�ation ahallenging problem. The problem of reognizing GPCR subfamilies isompounded by the fat that the subfamily lassi�ations in GPCRDBare de�ned hemially (that is, aording to the di�erential binding ofligands to the reeptors) and not neessarily by either sequene similarityor the post ligand-reeptor binding pathways.A number of other authors have desribed omputational approahesto lassifying GPCRs. Karhin et al18 trained 2-lass support vetor ma-hines (SVMs) using Fisher sore vetors derived from HMMs 13. Joostand Methner19 used a phylogeneti tree onstruted by neighbor joiningwith bootstrapping. Lapinsh et al 20 translated amino aid sequenesinto vetors based on the physiohemial properties of the amino aidsand used and autoross-ovariane transformation followed by prinipalomponents analysis (PCA) to lassify GPCRs.For our experiments, sequenes were obtained from the GPCRDBdatabase 17 . Beause of the smaller number of sequenes in ClassesB-E, we have foussed our analysis of Class A sequenes. Our datasetomprised 946 sequenes, of whih 303 were \orphan" reeptors, withno family lassi�ation. A portion of the lustering results using thein�nite Gaussian mixture model are shown in Figure 4. Beause of thesequene diversity of this superfamily, a larger number of smaller lus-ters are evident around the diagonal than were observed with the globinsequenes. Most of the homogeneous lusters (solid olor) omprise se-quenes from the same subfamily (level 3 in the GPCRDB hierarhy),and appear to be orthologs of the same protein from related speies.Whilst a detailed analysis of these is beyond the sope of the present pa-per, as an illustration, we note that the largest luster (bottom right handorner), omprises Rhodopsin (Rhodopsin Vertebrate type 1) sequenesfrom mammals and reptiles (plus lamprey), whilst the seond lusteris omposed entirely of �sh Rhodopsins. Some unexpeted assoiationsalso appear. Although in some ase our results indiate assignments forertain orphan reeptors whih agree those of the authors ited above,in other ases our preditions are novel. A detailed analysis of these willbe published in an extended version of this paper.http://www.gpr.org 10
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Figure 4: Part of the lustering of the GPCR Class A sequenes.5 DisussionThe onsisteny of the lusters we obtain with a well annotated super-family of protein sequenes suh as the globins gives us on�dene thatour method is produing biologially meaningful results, whih providea very good indiation of the underlying families and subfamilies. Ho-mogeneous lusters tend to onsist of orthologs of the same protein andparalogs appear to be separated into distint lusters. This pattern ap-pears to be repeated in our lustering of the GPCR sequenes, with thepotential of providing funtional annotations for ertain orphan reep-tors. Whilst some of these agree with preditions derived from neighbor-joining phylogeneti trees and prinipal omponent analysis, a numberare novel. In all ases, our method provides a �ner level of granularitythan the method of Lapinsh et al. 20, lustering orphan reeptors withmembers of partiular GPCRDB subfamilies, rather than a broad fam-ily lassi�ation. With the inlusion of seondary stuture and residuesolvent aessibility information in the HMM on whih our method isbased, the lustering of the SCOP globin sequenes hanges from a largenumber of small lusters of funtionally related sequenes to a smallernumber of lusters, in whih the members of the SCOP globin familiesare learly separated. However, one again we ahieve an even �ner levelof lassi�ation, learly separating �, � and myoglobins, as well as othermembers of SCOP lass a.1.1.2. This suggests that our method also hasthe potential to provide a novel automated method for the struturallassi�ation of proteins. In order to ahieve a large sale lustering ofsequene or struture spae we will investigate the use of Fisher soresobtained from from a \mixture model" whih ombines individual mod-11
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