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Abstract

The sparse pseudo-input Gaussian process
(SPGP) is a new approximation method for
speeding up GP regression in the case of a
large number of data points N . The ap-
proximation is controlled by the gradient
optimization of a small set of M ‘pseudo-
inputs’, thereby reducing complexity from
O(N3) to O(M2N). One limitation of the
SPGP is that this optimization space be-
comes impractically big for high dimensional
data sets. This paper addresses this limi-
tation by performing automatic dimension-
ality reduction. A projection of the input
space to a low dimensional space is learned in
a supervised manner, alongside the pseudo-
inputs, which now live in this reduced space.
The paper also investigates the suitability
of the SPGP for modeling data with input-
dependent noise. A further extension of the
model is made to make it even more power-
ful in this regard – we learn an uncertainty
parameter for each pseudo-input. The com-
bination of sparsity, reduced dimension, and
input-dependent noise makes it possible to
apply GPs to much larger and more complex
data sets than was previously practical. We
demonstrate the benefits of these methods on
several synthetic and real world problems.

1 Introduction

Gaussian process (GP) models are widely used to per-
form Bayesian non-linear non-parametric regression
and classification. However one of their principal lim-
itations is their O(N3) scaling for training, where N
is the number of data points. There have been many
methods proposed in recent years to address this prob-
lem, and bring the scaling down to O(M2N) where

M � N [Tresp, 2000, Smola and Bartlett, 2001,
Williams and Seeger, 2001, Csató and Opper, 2002,
Csató, 2002, Lawrence et al., 2003, Seeger et al., 2003,
Seeger, 2003, Quiñonero Candela, 2004].

Recently we developed the sparse pseudo-input Gaus-
sian process (SPGP) for regression and showed im-
provements over previous sparse GP methods in a
number of ways [Snelson and Ghahramani, 2006].
Firstly the approximation used in the SPGP is a more
accurate approximation to the full GP than used by
e.g. Seeger et al. [2003]. Secondly the approximation
is based on a set of ‘pseudo-inputs’ which are learned
by gradient optimization, and are therefore not con-
strained to lie on the data points. This contrasts with
the previous sparse GP methods which rely on itera-
tively choosing a subset of the data – the active set –
on which to base the approximation. Learning the
pseudo-inputs with gradients allows a greater accu-
racy to be achieved and allows hyperparameters to be
learned in one joint optimization.

One limitation of the SPGP is that learning the
pseudo-inputs becomes impractical for the case of a
high dimensional input space. For M pseudo-inputs
and a D dimensional input space we have a contin-
uous M × D dimensional optimization task. In this
paper we overcome this limitation by learning a projec-
tion of the input space into a lower dimensional space.
The pseudo-inputs live in this low dimensional space
and hence the optimization problem is much smaller.
This can be seen as performing supervised dimension-
ality reduction. In section 6, on several real regression
tasks, we show that the dimensionality reduction leads
to great reductions in training time over the standard
SPGP for little loss in predictive accuracy.

The extra flexibility afforded by learning the pseudo-
inputs means that the SPGP is capable of model-
ing input-dependent noise (heteroscedasticity). This
is something that is very difficult to achieve with a
standard GP without resorting to expensive sampling
[Goldberg et al., 1998]. In this paper we explore the



capabilities of the SPGP for heteroscedastic regression
tasks, and we develop a further extension of the model
that allows an even greater degree of flexibility in this
regard. We do this by learning individual uncertainty
parameters for the pseudo-inputs.

The extensions of the SPGP presented in this paper
allow GP methods to be applied to a large variety of
data sets. We can now deal successfully with a large
number of data points, high dimensional input spaces,
and variable noise. The desirable properties of the
GP are maintained throughout – we can make fully
probabilistic predictions with appropriate variances.

2 Gaussian processes for regression

In this section we briefly summarize GPs for regres-
sion, but see [Rasmussen and Williams, 2006, Williams
and Rasmussen, 1996, Rasmussen, 1996, Gibbs, 1997,
MacKay, 1998] for more detail. We have a data set
D consisting of N input vectors X = {xn}N

n=1 of
dimension D and corresponding real valued targets
y = {yn}N

n=1. We place a zero mean Gaussian pro-
cess prior on the underlying latent function f(x) that
we are trying to model. We therefore have a multivari-
ate Gaussian distribution on any finite subset of latent
variables; in particular, at X: p(f |X) = N (f |0,KN),
whereN (f |m,V) is a Gaussian distribution with mean
m and covariance V. In a Gaussian process the co-
variance matrix is constructed from a covariance func-
tion, or kernel, K which expresses some prior notion
of smoothness of the underlying function: [KN ]nn′ =
K(xn,xn′). Usually the covariance function depends
on a small number of hyperparameters θ, which con-
trol these smoothness properties. For our experiments
later on we will use the standard stationary squared
exponential covariance with ‘automatic relevance de-
termination’ (ARD) hyperparameters [MacKay, 1998]:

K(xn,xn′) = c exp
[
− 1

2

D∑
d=1

bd

(
x(d)

n − x
(d)
n′

)2
]

, (1)

where θ = {c,b} and b = (b1, . . . , bD).

In standard GP regression we also assume a Gaussian
noise model or likelihood p(y|f) = N (y|f , σ2I). Inte-
grating out the latent function values we obtain the
marginal likelihood:

p(y|X,Θ) = N (y|0,KN + σ2I) , (2)

which is typically used to train the GP by finding a
(local) maximum with respect to the hyperparameters
Θ = {θ, σ2}.

Prediction is made by considering a new input point
x∗ and conditioning on the observed data and hyper-
parameters. The distribution of the target value at the

new point is then:

p(y|x∗,D,Θ) = N (y|µ∗, σ2
∗) , (3)

µ∗ = K∗N(KN + σ2I)−1y

σ2
∗ = K∗∗ −K∗N(KN + σ2I)−1KN∗ + σ2 ,

where [K∗N ]n = K(x∗,xn) and K∗∗ = K(x∗,x∗). The
GP is a non-parametric model, because the training
data are explicitly required at test time in order to
construct the predictive distribution, as is clear from
the above expression.

GPs are prohibitive for large data sets because train-
ing requires O(N3) time due to the inversion of the
covariance matrix. Once the inversion is done, predic-
tion is O(N) for the predictive mean and O(N2) for
the predictive variance per new test case.

3 Sparse pseudo-input Gaussian
processes

In this section we review the SPGP, but omit its
derivation as an approximation to a GP, for which we
refer back to the original paper [Snelson and Ghahra-
mani, 2006]. Quiñonero Candela and Rasmussen
[2005] also provide a review paper which assesses the
relationship between various sparse GP approxima-
tions including the SPGP. The SPGP approximation
is based on a set of M pseudo-inputs X̄ = {x̄m}M

m=1.
We call these pseudo-inputs because they are not a
subset of the data inputs, but rather parameters to
be learned. The pseudo-inputs can be considered to
parameterize an approximation to the GP covariance
function (1). Leaving aside its derivation, the SPGP
covariance function takes on the following form:

KSPGP(xn,xn′) = KnMK−1
M KMn′ + λnδnn′ , (4)

λn = Knn −KnMK−1
M KMn .

Here KnM has as its elements K(xn, x̄m), the covari-
ance between a data point and a pseudo-input. KM

has as its elements K(x̄m, x̄m′), the covariance of the
pseudo-inputs themselves. Notice that even though
the underlying GP covariance (1) is stationary, the
SPGP covariance is a more complicated non-stationary
quantity due to the influence of the particular locations
of the pseudo-inputs.

The SPGP covariance matrix is formed from (4):
[KSPGP

N ]nn′ = KSPGP(xn,xn′). The marginal likelihood
can then be constructed analogous to (2):

p(y|X, X̄,Θ) = N (y|0,KSPGP
N + σ2I) . (5)

The marginal likelihood is a function of the hyperpa-
rameters Θ and the pseudo-inputs X̄, and it is used



to train the SPGP. The hyperparameters and pseudo-
inputs are learned jointly by maximizing the likelihood
using gradient ascent. The computational efficiency
arises because the covariance KSPGP

N consists of a sum
of a low rank part and a diagonal part, and can there-
fore be inverted in O(M2N) rather than O(N3) time.

Just as in the standard GP, the predictive distribution
can be computed by considering a new point x∗ and
conditioning on the data D:

p(y|x∗,D, X̄,Θ) = N (y|µ∗, σ2
∗) , (6)

µ∗ = K∗MQ−1KMN(Λ + σ2I)−1y

σ2
∗ = K∗∗ −K∗M(K−1

M −Q−1)KM∗ + σ2 ,

where Q = KM + KMN(Λ + σ2I)−1KNM and Λ =
diag(λ). After O(M2N) precomputation, the predic-
tive mean and variance can be computed in O(M) and
O(M2) respectively per test case.

4 Dimensionality reduction

The SPGP improves the accuracy of its approxima-
tion by adjusting the positions of the pseudo-inputs
to fit the data well. However a limitation of this pro-
cedure is that whereas the standard GP only had a
small number |Θ| of parameters to learn, the SPGP
has a much larger number: MD + |Θ|. Whilst we
can adjust the number of pseudo-inputs M depend-
ing on our time available for computation, if we have
a high dimensional (D) input space the optimization
is impractically large. In this section we address this
problem by learning a low dimensional projection of
the input space.

In order to achieve this dimensionality reduction we
adapt an idea of Vivarelli and Williams [1999] to the
SPGP. They replaced the ARD lengthscale hyperpa-
rameters b in the GP covariance function (1) with a
general positive definite matrix W , in order to provide
a richer covariance structure between dimensions:

K(xn,xn′) = c exp
[
− 1

2 (xn−xn′)>W (xn−xn′)
]

. (7)

W need not be totally general – it can be restricted to
be low rank by decomposing it as W = P>P , where
P is a (G × D) matrix and G < D. This is clearly
exactly equivalent to making a linear low dimensional
projection of each data point xnew

n = Pxn, and has the
covariance function:

K(xn,xn′) = c exp
[
− 1

2

(
P (xn − xn′)

)>
P (xn − xn′)

]
.

(8)

We use exactly this covariance structure for dimen-
sionality reduction in the SPGP. However the SPGP
covariance function (4) is constructed from covariances

between data-points and pseudo-inputs K(xn, x̄m),
and from the covariances of the pseudo-inputs them-
selves K(x̄m, x̄m′). The projection means that we only
need to consider the pseudo-inputs living in the re-
duced dimensional (G) space. Finally we therefore use
the following covariances:

K(xn, x̄m) = c exp
[
− 1

2 (Pxn − x̄m)>(Pxn − x̄m)
]

K(x̄m, x̄m′) = c exp
[
− 1

2 (x̄m − x̄m′)>(x̄m − x̄m′)
]

,

(9)

where the {x̄m} are G dimensional vectors. Note that
it is not necessary to introduce extra lengthscale hy-
perparameters for the pseudo-inputs themselves be-
cause they would be redundant. The pseudo-inputs
are free to move, and the projection matrix P can
scale the real data points arbitrarily to ‘bring the data
to the pseudo-inputs’.

Setting aside computational issues for the moment it is
worth noting that even with G < D the covariance (8)
may be more suitable for a particular data set than the
standard ARD covariance (1), because it is capable of
mixing dimensions together. However this is not our
principal motivation. The SPGP with ARD covari-
ance has MD + D + 2 parameters to learn, while with
dimensionality reduction it has (M +D)G+2. Clearly
whether this is a smaller optimization space depends
on the exact choices for M and G, but we will show on
real problems in section 6 that G can often be chosen
to be very small.

Just to clarify: the training procedure for the dimen-
sionality reduced SPGP (SPGP+DR) is to maximize
the marginal likelihood (5) using gradients with re-
spect to the pseudo-inputs X̄, the projection matrix
P , the size c, and the noise σ2.1 The procedure can
be considered to perform supervised dimensionality re-
duction – an ideal linear projection is learned for ex-
plaining the target data. This is in contrast to the
many unsupervised dimensionality reduction methods
available (e.g. PCA), which act on the inputs alone.

5 Variable noise

In [Snelson and Ghahramani, 2006] we showed pre-
liminary results on a synthetic data set that suggested
that the SPGP is capable of dealing with some forms of
input-dependent noise (heteroscedasticity). In section
6 we investigate these capabilities further by testing
the SPGP on some real data sets believed to be het-
eroscedastic in nature. However the SPGP is limited

1The gradient derivations are complicated and tedious,
and so are omitted here. However they closely follow Seeger
et al. [2003].



in its power to model variable noise. In this section we
propose a further extension to the model that enables
a greater variety of data sets to be effectively modeled.

The best way to see the limitation of the SPGP for
variable noise is to examine Figure 1b, reproduced
from [Snelson and Ghahramani, 2006]. Although the
SPGP has a single global noise level σ2, the predic-
tive variances will only drop to this level in regions
close to pseudo-inputs. Away from pseudo-inputs the
predictive variance rises to c+σ2 because correlations
cannot be modeled in these regions. During training,
the SPGP can adjust its pseudo-inputs to take advan-
tage of this by-product of the non-stationarity of the
sparse covariance function. By shifting all the pseudo-
inputs to the left in Figure 1b, the SPGP models the
variable noise vastly better than the standard GP does
in Figure 1a. However this comes at a price – the cor-
relations towards the right side of Figure 1b cannot be
modeled because there are no pseudo-inputs there.

Our proposed extension gets around this problem by
introducing extra uncertainties associated with each
pseudo-point. We alter the covariance of the pseudo-
inputs in the following way:

KM → KM + diag(h) , (10)

where h is a positive vector of uncertainties to be
learned. These uncertainties allow the pseudo-inputs
to be gradually ‘switched off’ as the uncertainties are
increased. If hm = 0 then that particular pseudo-
input behaves exactly as in the SPGP. As hm grows,
that pseudo-input has less influence on the predictive
distribution. This means that the pseudo-inputs’ role
is not ‘all or nothing’ as it was in the SPGP. A pseudo-
input can be partly turned off to allow a larger noise
variance in the prediction whilst still modeling corre-
lations in that region. As hm →∞, the pseudo-input
is totally ignored. We refer to this heteroscedastic ex-
tension as the SPGP+HS.

Figure 2 shows sample data drawn from the marginal
likelihood of the SPGP+HS model, where the com-
ponents of h have been set to three different values.
These values are indicated by the sizes of the blue
crosses representing the pseudo-inputs – a larger cross
means a lower uncertainty. Notice the different noise
regimes in the generated data.

To train the model, we follow the same procedure as
earlier – we include h as extra parameters to be learned
by gradient based maximum likelihood. We tested this
on the synthetic data of Figure 1, and the predictive
distribution is shown in Figure 1c. Now the pseudo-
inputs do not all have a tendency to move to the left,
but rather the right most ones can partly turn them-
selves off, enabling the correlations present towards the
right of the data set to be modeled very well.

x

y

(a) GP

x

y

(b) SPGP

x

y

(c) SPGP+HS. The size of a blue cross is a func-
tion of the inverse uncertainty associated with that
pseudo-input.

Figure 1: The predictive distributions after training
on a synthetic heteroscedastic data set are shown for
the standard GP, SPGP, and SPGP+HS. The data
points are the magenta points. The mean prediction
and two standard deviation lines are plotted in black.
x locations of pseudo-inputs are shown as blue crosses
(the y positions are not meaningful).
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Figure 2: Sample data drawn from the SPGP+HS
marginal likelihood for a particular choice of pseudo-
input locations (blue crosses), hyperparameters, and
pseudo uncertainties. The size of a blue cross is re-
lated to the inverse of the uncertainty associated to
that pseudo-input.

Our visual intuition is borne out when we look at nega-
tive log predictive density (NLPD, with smallest being
best) and mean squared error (MSE) scores on a with-
held test set for this data set. These are shown below.
On NLPD the GP does badly, the SPGP better, but
the new method SPGP+HS does best of all, because
it models the noise process well. The SPGP is not so
good on MSE, because it is forced to sacrifice modeling
the correlations on the right side of the data set.

Method NLPD MSE

GP 3.09 14.16

SPGP 2.74 16.98

SPGP+HS 2.57 14.37

6 Results

We decided that an ideal test bed for the SPGP and its
extensions considered in this paper would be the data
sets of the WCCI-2006 Predictive Uncertainty in Envi-
ronmental Modeling Competition, run by Gavin Caw-
ley2. Some of the data sets have a fairly large num-
ber of dimensions (>100), and Gavin Cawley suggests
that heteroscedastic modeling techniques may well be
necessary to perform well on this environmental data.
The competition required probabilistic predictions and
was to be scored by negative log predictive density
(NLPD) on a withheld test set. Unfortunately by the
time the competition closed we had only made a sub-
mission on one data set (Temp), on which we scored
first place. However since then, we have experimented
further with our methods on the data sets, and Gavin
Cawley kindly agreed to evaluate several more submis-
sions on the test sets, which we report here.

Some properties of the data sets we considered are
2http://theoval.sys.uea.ac.uk/competition/

Table 1: Properties of the competition data sets

Data set Temp SO2 Synthetic

Dimension (D) 106 27 1

Training set size 7117 15304 256

Validation set size 3558 7652 128

Test set size 3560 7652 1024

shown in Table 1.3 Most of the results shown in the fol-
lowing sections are obtained by training on the train-
ing set only and evaluating on the validation set. This
is because the test set targets are not publicly avail-
able. These results serve as useful comparisons be-
tween our different methods. However some results
were obtained by training on the training and valida-
tion sets, before being sent to Gavin Cawley for eval-
uation on the withheld test set. With these results we
can see how our methods fare against a host of com-
peting algorithms whose performance is shown on the
competition web site2.

6.1 Temp data set

The targets of the Temp data set are maximum daily
temperature measurements, and are to be predicted
from 106 input variables representing large-scale cir-
culation information. We conducted a series of experi-
ments to see how dimensionality reduction performed,
and these are presented in Table 2a. To compare, we
ran the standard SPGP with no dimensionality reduc-
tion (which took a long time to train). Although the
dimensionality reduction did not produce better per-
formance than the standard SPGP, we see that we
are able to reduce the dimensions from 106 to just 5
with only a slight loss in accuracy. The main thing to
notice is the training and test times, where reducing
the dimension to 5 has sped up training and testing
by an order of magnitude over the standard SPGP.4

Clearly some care is needed in selecting the reduced
dimension G. If it is chosen too small then the repre-
sentation is not sufficient to explain the targets well,
and if it is too large then there are probably too many
parameters in the projection P to be fit from the data.
Cross-validation is a robust way of selecting G.

3The competition also had a further data set Precip,
which we have not considered. This is because a histogram
of the targets showed a very large spike at exactly zero,
which we felt would be best modeled by a hierarchy of a
classifier and regressor. The SO2 data set was somewhat
similar but not nearly so extreme, so here we could get
away with a log(y + a) preprocessing transform.

4The actual training and test times are affected not just
by the number of parameters to be optimized, but also
by details of the gradient calculations, where complicated
memory/speed trade-offs have to be made. We have tried
to implement both versions efficiently.



Validation Time /s

Method NLPD MSE Train Test

SPGP 0.063 0.0714 4420 0.567

+DR 2 0.106(2) 0.0754(5) 180(10) 0.043(1)

+DR 5 0.071(8) 0.0711(7) 340(10) 0.061(1)

+DR 10 0.112(10) 0.0739(12) 610(20) 0.091(1)

+DR 20 0.181(5) 0.0805(7) 1190(50) 0.148(1)

+DR 30 0.191(6) 0.0818(7) 1740(50) 0.206(3)

+HS,DR 5 0.077(5) 0.0728(3) 360(10) 0.062(3)

+PCA 5 0.283(1) 0.1093(1) 200(10) 0.047(2)

(a) Temp. M = 10 pseudo-inputs used.

Validation Time /s

Method NLPD MSE Train Test

SPGP 4.309(2) 0.812(1) 890(40) 0.723(6)

+DR 2 4.349(1) 0.814(2) 80(5) 0.165(2)

+DR 5 4.325(1) 0.815(4) 160(5) 0.233(1)

+DR 10 4.323(3) 0.809(5) 290(15) 0.342(2)

+DR 15 4.341(3) 0.803(6) 400(10) 0.458(5)

+DR 20 4.350(3) 0.807(2) 530(15) 0.562(4)

+HS 4.306(1) 0.809(2) 860(30) 0.714(4)

+PCA 5 4.395(1) 0.855(2) 170(10) 0.255(3)

(b) SO2. M = 20 pseudo-inputs used.

Table 2: Results showing NLPD and MSE score (smaller is better) on the validation sets of two competition
data sets, Temp and SO2. Times to train on the training set and test on the validation set are also shown. SPGP
indicates the standard SPGP, +DR G indicates dimensionality reduction to dimension G, +HS indicates the
heteroscedastic extension to the SPGP has been used, +PCA G means PCA to dimension G before standard
SPGP. Where possible trials were repeated 5 times and standard errors in the means have been reported –
numbers in parentheses refer to errors on final digit(s).

Of course a much simpler way of achieving a lin-
ear projection of the input space is to do PCA be-
fore using the standard SPGP on the smaller dimen-
sional space. In this case the projection is made com-
pletely ignoring the target values. The idea behind
the SPGP+DR is that the target values should help
in choosing the projection in a supervised manner, and
that better performance should result. To test this we
used PCA to reduce the dimension to 5, before using
the SPGP. The results are shown in Table 2a as well.
We see that the SPGP+PCA performs significantly
worse than the SPGP+DR both on NLPD and MSE
scores. The equivalent reduction to 5 dimensions using
the SPGP+DR does not cost too much more than the
PCA method either, in terms of training or test time.

Our entry to the competition was made by using the
SPGP+DR with dimensionality reduction to G = 5,
and M = 10 pseudo-inputs. We trained on the train-
ing set and validation sets, and obtained test set NLPD
of 0.0349 and MSE of 0.066, which placed us first place
on the Temp data set on both scores (see the compe-
tition web site2). This provides justification that the
SPGP+DR is a very competitive algorithm, managing
to beat other entries from MLPs to Support Vector
Regression, and requiring little training and test time.

We then decided to investigate the heteroscedastic ca-
pabilities of the SPGP, and the SPGP+HS extension
proposed in section 5. Table 2a reports the perfor-
mance of the SPGP+HS when combined with a dimen-
sionality reduction to G = 5. In this case the extension
did not perform better than the standard SPGP. How-
ever, it could be that either the Temp data set is not
particularly heteroscedastic, or that the SPGP itself
is already doing a good job of modeling the variable

noise. To investigate this we trained a standard GP
on a small subset of the training data of 1000 points.
We compared the performance on the validation set
to the SPGP (M = 10) trained on the same 1000
points. Since the SPGP is an approximation to the
GP, näıvely one would expect it to perform worse.
However the SPGP (NLPD 0.16, MSE 0.08) signifi-
cantly outperformed the GP (NLPD 0.56, MSE 0.11).
We suspect that the SPGP does a good job of model-
ing heteroscedasticity in this data set – something the
GP cannot do. The SPGP+HS proposed in section 5
could do no better in this case.

Of course the gradient optimization of the likelihood is
a difficult non-convex problem, with many local min-
ima. However the performance seems fairly stable to
repeated trials, with relatively low variability.

6.2 SO2 data set

For the SO2 data set the task is to forecast the concen-
tration of SO2 in an urban environment twenty-four
hours in advance, based on current SO2 levels and me-
teorological conditions. The results presented in Ta-
ble 2b show a similar story to those on the Temp data
set. In this case there are a very large number of data
points, but a smaller number of dimensions D = 27.
Although in this case it is perfectly feasible to train the
SPGP in a reasonable time without dimensionality re-
duction, we decided to investigate its effects. Again
we find that we can achieve a significant speed up in
training and testing for little loss in accuracy. When
we compare reducing the dimension to 5 using PCA
to using the SPGP+DR, we again find that PCA does
not perform well. There is certainly information in



the targets which is useful for finding a low dimen-
sional projection. We also tested the SPGP+HS (with
no dimensionality reduction), and we see similar, per-
haps slightly better, performance than the standard
SPGP. We therefore decided to compile a submission
using the SPGP+HS, training on the training and val-
idation sets, to submit to Gavin Cawley for evaluation
on the test set. We scored an NLPD of 4.28, and MSE
of 0.82. Had we managed to submit this entry to the
competition before the deadline, we would have been
placed second on this data set, again showing the com-
petitiveness of our methods. This time when a GP is
compared to the SPGP on a subset of training data
of size 1000, the performance is very similar, leading
us to suspect that there is not too much to be gained
from heteroscedastic methods on this data.

6.3 Synthetic data set

The final competition data set is a small 1D data set
particularly generated to test heteroscedastic methods.
Figure 3 shows plots of the data, and the predictive dis-
tributions obtained using a GP, a standard SPGP, and
the SPGP+HS. These plots show again that the SPGP
itself is very capable of modeling certain types of het-
eroscedasticity. The SPGP+HS creates a very similar
predictive distribution, but is able to refine it slightly
by using more pseudo-inputs to model the correlations.
Both of these look much better than the GP. We sent
submissions of all three methods to Gavin Cawley for
him to evaluate on the test set. Either the SPGP
(NLPD 0.380, MSE 0.571), or the SPGP+HS (NLPD
0.383, MSE 0.562), would have been placed first under
NLPD score. In contrast the GP (NLPD 0.860, MSE
0.573) performed poorly on NLPD score as expected.
So again we have further evidence that the SPGP can
be a very good model for heteroscedastic noise alone.
The SPGP+HS extension may improve matters in cer-
tain circumstances – here it actually seems to slightly
improve MSE over the SPGP, just as we saw for the
synthetic data set of section 5.

6.4 Motorcycle data set

We finally tested our methods on a data set from Sil-
verman [1985] – data from a simulated motorcycle ac-
cident. This is a very small (133 points) 1D data set,
which is known for its non-stationarity. We removed
10 random points for testing, trained on the remainder,
repeated the procedures 100 times, and the results are
shown below. Here we have to report a failure of our
methods. The SPGP does not do much better than a
standard GP because it cannot deal with this degree
of non-stationarity. The SPGP+HS fails completely
because it overfits the data badly. The reason for the
overfitting is a bad interaction between all the hyper-
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(b) SPGP

x

y

(c) SPGP+HS

Figure 3: The predictive distributions on the compe-
tition Synthetic data set are shown for the standard
GP, SPGP, and SPGP+HS.

parameters, where the lengthscale is driven too small,
and the pseudo-noise parameters allow the predictive
distribution to pinch in on some individual training
data points. Essentially, for such a small data set,
we have allowed too much flexibility in our covariance
function for all the hyperparameters to be fitted using
maximum likelihood.

Method NLPD MSE

GP 4.6 2.6 ×102

SPGP 4.5 2.6 ×102

SPGP+HS 11.2 2.8 ×102



7 Conclusions and future work

In this paper we have demonstrated the capabilities of
the SPGP and its extensions for modeling data sets
with a wide range of properties. The original SPGP
could handle data sets with a large number of data
points. However it was impractical for data sets with
high dimensional input spaces. By learning a linear
projection we achieve supervised dimensionality reduc-
tion, and greatly speed up the original SPGP for little
loss in accuracy. We also have shown the advantage
of this supervised dimensionality reduction over the
obvious unsupervised linear projection, PCA.

We have also investigated the use of the SPGP for
modeling heteroscedastic noise. We find that the
original SPGP is a surprisingly good model for het-
eroscedastic noise, at least in the predictive uncer-
tainty competition data sets. We have also developed
an extension of the SPGP more specifically designed
for heteroscedastic noise, which although not improv-
ing performance on the competition data sets, should
provide advantages for some types of problem. How-
ever the increase in flexibility to the covariance func-
tion can cause overfitting problems for certain data
sets, and it is future work to improve the robustness
of the method. We could certainly try various forms
of regularization and even full Bayesian inference.

There have been a number of previous approaches to
developing non-stationary GP models, e.g. Paciorek
and Schervish [2004], Higdon et al. [1999]. In con-
trast to these models, the non-stationarity of the
SPGP(+HS) covariance arises directly from the sparse
construction. It would be interesting to compare these
different approaches further.

The competitiveness of our methods has been demon-
strated by our excellent performance on the compe-
tition data sets. The scores we achieved on the test
sets would have placed us first position on two of the
data sets, and second on one. A wide range of other
algorithms were competing.
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L. Csató and M. Opper. Sparse online Gaussian processes.
Neural Computation, 14:641–668, 2002.

M. N. Gibbs. Bayesian Gaussian Processes for Regression

and Classification. PhD thesis, Cambridge University,
1997.

P. W. Goldberg, C. K. I. Williams, and C. M. Bishop. Re-
gression with input-dependent noise: A Gaussian pro-
cess treatment. In Advances in Neural Information Pro-
cessing Systems 10. MIT Press, 1998.

D. Higdon, J. Swall, and J. Kern. Non-stationary spatial
modeling. In J. M. Bernardo et al., editor, Bayesian
Statistics 6. OUP, 1999.

N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse
Gaussian process methods: the informative vector ma-
chine. In Advances in Neural Information Processing
Systems 15. MIT Press, 2003.

D. J. C. MacKay. Introduction to Gaussian processes. In
C. M. Bishop, editor, Neural Networks and Machine
Learning, NATO ASI Series, pages 133–166. Kluwer
Academic Press, 1998.

C. J. Paciorek and M. J. Schervish. Nonstationary co-
variance functions for Gaussian process regression. In
Advances in Neural Information Processing Systems 16.
MIT Press, 2004.

J. Quiñonero Candela. Learning with Uncertainty — Gaus-
sian Processes and Relevance Vector Machines. PhD
thesis, Technical University of Denmark, 2004.
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