
On Strutured Variational ApproximationsZoubin GhahramaniGatsby Computational Neurosiene UnitUniversity College LondonCenter for Automated Learning and DisoveryShool of Computer SieneCarnegie Mellon UniversityEmail: zoubin�gatsby.ul.a.uk20 Marh 2002(This is an revised and expanded version ofUniversity of Toronto Tehnial Report CRG-TR-97-1)AbstratThe problem of approximating a probability distribution ours frequently in many areas of appliedmathematis, inluding statistis, ommuniation theory, mahine learning, and the theoretial analysisof omplex systems suh as neural networks. Saul and Jordan (1996) have reently proposed a powerfulmethod for eÆiently approximating probability distributions known as strutured variational approx-imations. In strutured variational approximations, exat algorithms for probability omputation ontratable substrutures are ombined with variational methods to handle the interations between thesubstrutures whih make the system as a whole intratable. In this note, I present a mathematial resultwhih an simplify the derivation of strutured variational approximations in the exponential family ofdistributions.1 IntrodutionBelief networks provide a well-understood graphial framework for expressing the interations between ran-dom variables. Suh networks have proven useful for modeling the ausal struture of omplex systems ofinterating variables, suh as diseases and symptoms in a medial diagnosis problem. They also providean elegant framework for understanding the relation between neural network learning algorithms and moretraditional statistial models. Finally, some would argue that belief networks themselves are an appealingmodel of neural omputation and pereptual inferene in humans.One of the essential attributes of a belief network is that it de�nes a graphial struture within whihto do Bayesian inferene in a probabilistially onsistent manner. The graphial struture spei�es a set ofonditional independenes between the variables in the network. These independenes an be exploited toderive reursive algorithms for inferring the onditional probabilities of any set of variables given any otherset of variables. However, for general belief networks with arbitrary onnetivity and nonlinear interations,the problem of exat inferene is omputationally intratable (Cooper, 1990). Therefore, in pratie thisintratability must be irumvented by making use of approximate algorithms for inferene. Two suhlasses of algorithms are Markov hain Monte Carlo methods and variational approximations, both of whihwere developed in large part by statistial physiists modeling systems of many interating partiles.1 Inthis paper we present a simple mathematial result onerning variational approximations and disuss itsappliability to the pratial problem of deriving learning algorithms.2 Strutured Variational ApproximationsConsider the belief network shown in Figure 1a, where the shaded node orresponds to an observed variablesV and the unshaded nodes orrespond to hidden variables S. The presene of direted edges in the beliefnetwork expresses a set of onditional independene relations between the variables: namely, that the variable1A review of Markov Chain Monte Carlo methods is provided by Neal (1993); mean �eld methods in physis, whih are alass of variational approximation, are disussed in Parisi (1988).1
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V V V VFigure 1: A belief network and two approximations.assoiated with eah node is onditionally independent of the variables assoiated with that node's non-desendants given its parents. Using these independene relations, the joint probability of S and V an bewritten as P (S1; : : : ; SN ; V ) = P (S1)P (S2jS1) : : : P (SN jSN�1)P (V jS1; : : : ; SN): (1)To illustrate the intratability of inferene in this network, onsider the problem of omputing the onditionalprobability distribution of one of the hidden variables, say S1, given the observed variable. There are atleast two reasons one may want to ompute this distribution. First, S1 may be the variable of interest inan inferene problem, for example, for medial diagnosis, whih justi�es marginalizing over the other hiddenvariables. Seond, to estimate the parameters of the belief network using the Expetation-Maximization(EM) algorithm (Dempster et al., 1977) it is neessary to ompute onditional probabilities of subsets of thehidden variables given the observed variables.To ompute this onditional probability distribution we need to sum (or integrate) over all the possiblevalues of the hidden variables we are not diretly interested in:P (S1jV ) = XS2;:::;SN P (S1; : : : ; SN jV ) (2)= PS2;:::;SN P (S1; : : : ; SN ; V )PS1;:::;SN P (S1; : : : ; SN ; V ) : (3)For binary Si variables, for example, this summation inludes 2N terms. Without additional onstraints,there is no way of making use of the fatorization in (1) to simplify this omputation.To overome this omputational ost one an approximate the onditional distribution over the hiddenvariables by a simpler, tratable distribution. For example,Q(S1; : : : ; SN jV ) = Q(S1jV ) : : : Q(SN jV )assumes that given V , all the Si are independent (Figure 1b). This omplete fatorization is the assumptionused in simple mean �eld approximations in statistial mehanis. Assoiated with the approximatingdistribution Q is a vetor of variational parameters , whih an be optimized so as to make Q(SjV ) assimilar as possible to P (SjV ). A standard measure of similarity between two probability distributions is the2



Kullbak-Leibler divergene (or ross-entropy):KL(QkP ) =XS Q(SjV ) log Q(SjV )P (SjV ) : (4)Note that theKL-divergene is asymmetri in its two arguments; we fous on the above form of the divergenefor two reasons. First, it involves averages with respet to the tratable, Q, distribution. Seond, minimizingthis form of the KL-divergene orresponds to maximizing a lower bound on the log likelihood, a sensibleriterion for a learning algorithm (Neal and Hinton, 1998). The minimum of the KL-divergene is obtainedby taking the partial derivatives of KL(QkP ) with respet to the elements of , whih generally results ina set of �xed-point equations whih an be solved iteratively.A strutured variational approximation is simply an approximation in whih the hidden variables are notompletely fatorized, but rather they are related in a strutured manner (Saul and Jordan, 1996). Thebelief network orresponding to this approximation would therefore ontain some edges between the hiddenvariables. For example, a strutured variational approximation to (1) ould beQ(S1; : : : ; SN ; V ) = Q(S1)Q(S2jS1) : : : Q(SN jSN�1) � 1ZQ(V jS1) : : : Q(V jSN ): (5)The terms Q(S1)Q(S2jS1 : : :Q(SN jSN�1) retain the Markov hain struture onneting the hidden variablesin (1); however, the rest of the terms replae the Nth-order interation between the hidden variables and theobserved variable by N seond-order interations. The onstant Z normalizes the produt of these seond-order interations so as to de�ne a valid onditional probability of V given S1 to SN . A belief networkrepresenting this approximating distribution is shown in Figure 1, whih an be reognized as the beliefnetwork orresponding to a hidden Markov model (Smyth et al., 1997). However, it is a urious hiddenMarkov model in whih a single observed variable has been repliated N times and plaed at all of thevisible (shaded) nodes. Regardless of the nature of these visible nodes, a fast reursive algorithm exists|the forward-bakward algorithm{for alulating the posterior probabilities of the hidden variables given thevisible variables.2It now remains how to �nd parameters for Q that minimize (4). The result we present here an be usedto easily determine the �xed point equations for the minimum of (4).3 ResultsTheorem 1: Exponential Families For any distribution P (S) de�ned over a set of variables S = fSi :i 2 I = f1; : : :Ngg, where H(S) is de�ned so thatP (S) = 1Z expf�H(S)g;and any approximating distribution in the exponential family parametrized by ,Q(S) = exp8<: KXj=1 fj(S)�j() + �() + f0(S)9=; (6)= 1ZQ expf�HQ(S)g; (7)where HQ(S) = �PJj=0 fj(S)�j(), �0() = 1 and ZQ = expf��()g =PS expf�HQ(S)g, the Kullbak-Leibler divergene KL(QkP ) an be minimized by iteratively solving�hHQi�hfj(S)i = �hHi�hfj(S)i (8)2Another issue in an approximation like this one is that, while the posterior probabilities of the hidden variables might beeasy to ompute, the likelihood Q(V ) might still be intratable. In this ase, omputing Q(V ) still involves summing over allthe 2N states of the hidden variables. However, for inferene, Q(V ) need not be omputed, and during learning the algorithmwill still maximize a lower bound on the likelihood, P (V ). 3



for all j = 0; : : : J , where h�i denotes expetation over the approximating distribution Q.Proof. We start from the de�nition of the KL-divergeneKL(QkP ) = XS Q(S) log Q(S)P (S) (9)= hHi � hHQi+ logZ � logZQ: (10)Expanding the four terms using the hain rule and the de�nitions of the relevant quantities we obtain�hHi� = Xj �hHi�hfj(S)i �hfj(S)i� (11)�hHQi� = � ��XS Xj fj(S)�j()Q(S) (12)= � ��Xj �j()XS fj(S)Q(S) (13)= �Xj ��j()� hfj(S)i �Xj �j()�hfj(S)i� (14)� logZ� = 0 (15)� logZQ� = 1ZQ ��XS exp8<:Xj fj(S)�j()9=; (16)= Xj ��j()� hfj(S)i (17)Combining terms we obtain �KL� =Xj ��j() + �hHi�hfj(S)i� �hfj(S)i� : (18)Using �j() = � �hHQi�hfj(S)i we get that the zeros of the system of equations de�ned by (8) are also zeros of thesystem of equations de�ned by (18). QEDCorollary. If HQ(S) is an mth-order polynomial in S,HQ(S) =Xi12I i1Si1 + Xi1;i22I i1;i2Si1Si2 : : :+ Xi1;:::im2I i1;:::imSi1 : : : Sim ;then the variational �xed point equations set the oeÆients of HQ equal to the orresponding derivativesof hHi. i1 = �hHi�hSi1i (19)i1;i2 = �hHi�hSi1Si2i (20)...i1;:::im = �hHi�hSi1 : : : Simi ; (21)Remark 1. The exponential family of distributions inludes many models of interest, e.g., Boltzmannmahines, graphial Gaussian models, hidden Markov models, deision trees with multinomial variables.4



However, it does not inlude mixture models (unless the mixture omponent is expliitly represented by ahidden random variable) or sigmoid belief networks, for example.Remark 2. Expressing hHi in terms of the hfj(S)i may sometimes be diÆult.Theorem 2: Further Fatorizations IfP (S; V ) = 1ZYi f(Ci)where Ci are (possibly overlapping) subsets of variables Ci � fS; V g andQ(S) =Yj Qj(Kj)where Kj are (non-overlapping) subsets of variables Kj � fSg, then �nding a variational approximation thatmaximizes F1(Q) =Xs Q(S) log P (S; V )Q(S)is equivalent to maximizing F2( ~Q) =Xs ~Q(S) log P (S; V )~Q(S)where ~Q(S) = 1~ZYi;j ~Qij(Cij)where Cij = Ci \Kj .Proof. Writing out the variational lower bound:F1 =XS Yj Qj(Kj)[Xi fi(Ci)� logZP �Xj logQj(Kj)℄taking partial derivatives with respet to one of the distributions:�F1�Qj(Kj = k) = XSnKj Yj0 6=jQj0(Kj0)Xi fi(Ci)� logQj(Kj = k)� 1 + �jwhere �j is a Lagrange multiplier ensuring that Qj sums to one. De�nefij(Cij) � XSnKj Yj0 6=jQj0(Kj0 )fi(Ci)then �F1�Qj(Kj = k) = Xi:Ci\Kj 6=; fij(Cij) + onst� logQj(Kj = k)Solving we get: Qj(Kj) = 1ZYi Qij(Cij)whih is the same solution we would have gotten had we maximized F2 w.r.t. ~Q. QED.
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4 DisussionSeveral points are important to make. First, this result is espeially useful if both P (S) and Q(S) an bede�ned as ploynomials in S. In this ase, the �xed point equations an be obtained almost by inspetion,simply by equating terms with orrespondings powers of S. Seond, there may be multiple parametrizationsof the approximating distribution in terms of polynomials in S. For example, while the result is expressedfor a model in whih there are interations of every order up to the mth, suh models an be written interms of only mth order interations by subsuming the e�et of lower order parameters into the higherorder parameters. Finally, this result is meant as a pratial tool. More laborious alternative derivations ofvariational approximations are also generally possible.ReferenesCooper, G. F. (1990). The omputational omplexity of probabilisti inferene using Bayesian belief networks.Arti�ial Intelligene, 42(2-3):393{405.Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from inomplete data via the EMalgorithm. J. Royal Statistial Soiety Series B, 39:1{38.Neal, R. M. (1993). Probabilisti inferene using Markov hain monte arlo methods. Tehnial ReportCRG-TR-93-1, Department of Computer Siene, University of Toronto.Neal, R. M. and Hinton, G. E. (1998). A new view of the EM algorithm that justi�es inremental, sparse,and other variants. In Jordan, M. I., editor, Learning in Graphial Models. Kluwer Aademi Press.Parisi, G. (1988). Statistial Field Theory. Addison-Wesley, Redwood City, CA.Saul, L. and Jordan, M. I. (1996). Exploiting tratable substrutures in Intratable networks. In Touretzky,D., Mozer, M., and Hasselmo, M., editors, Advanes in Neural Information Proessing Systems 8. MITPress.Smyth, P., Hekerman, D., and Jordan, M. I. (1997). Probabilisti independene networks for hidden Markovprobability models. Neural Computation, 9:227{269.
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