
The EM Algorithm for Mixtures of Factor AnalyzersZoubin GhahramaniGeo�rey E. HintonDepartment of Computer ScienceUniversity of Toronto6 King's College RoadToronto, Canada M5S 1A4Email: zoubin@cs.toronto.eduTechnical Report CRG-TR-96-1May 21, 1996 (revised Feb 27, 1997)AbstractFactor analysis, a statistical method for modeling the covariance structure of highdimensional data using a small number of latent variables, can be extended by allowingdi�erent local factor models in di�erent regions of the input space. This results in amodel which concurrently performs clustering and dimensionality reduction, and canbe thought of as a reduced dimension mixture of Gaussians. We present an exactExpectation{Maximization algorithm for �tting the parameters of this mixture of factoranalyzers.1 IntroductionClustering and dimensionality reduction have long been considered two of the fundamentalproblems in unsupervised learning (Duda & Hart, 1973; Chapter 6). In clustering, the goalis to group data points by similarity between their features. Conversely, in dimensionalityreduction, the goal is to group (or compress) features that are highly correlated. In thispaper we present an EM learning algorithm for a method which combines one of the basicforms of dimensionality reduction|factor analysis|with a basic method for clustering|theGaussian mixture model. What results is a statistical method which concurrently performsclustering and, within each cluster, local dimensionality reduction.Local dimensionality reduction presents several bene�ts over a scheme in which clusteringand dimensionality reduction are performed separately. First, di�erent features may becorrelated within di�erent clusters and thus the metric for dimensionality reduction mayneed to vary between di�erent clusters. Conversely, the metric induced in dimensionalityreduction may guide the process of cluster formation|i.e. di�erent clusters may appearmore separated depending on the local metric.Recently, there has been a great deal of research on the topic of local dimensionalityreduction, resulting in several variants on the basic concept with successful applications tocharacter and face recognition (Bregler and Omohundro, 1994; Kambhatla and Leen, 1994;Sung and Poggio, 1994; Schwenk and Milgram, 1995; Hinton et al., 1995). The algorithmused by these authors for dimensionality reduction is principal components analysis (PCA).1



����z����x	 ?- �Figure 1: The factor analysis generative model (in vector form).PCA, unlike maximum likelihood factor analysis (FA), does not de�ne a proper densitymodel for the data, as the cost of coding a data point is equal anywhere along the principalcomponent subspace (i.e. the density is un-normalized along these directions). Furthermore,PCA is not robust to independent noise in the features of the data (see Hinton et al., 1996,for a comparison of PCA and FA models) . Hinton, Dayan, and Revow (1996), also exploringan application to digit recognition, were the �rst to extend mixtures of principal componentsanalyzers to a mixture of factor analyzers. Their learning algorithm consisted of an outerloop of approximate EM to �t the mixture components, combined with an inner loop ofgradient descent to �t each individual factor model. In this note we present an exact EMalgorithm for mixtures of factor analyzers which obviates the need for an outer and innerloop. This simpli�es the implementation, reduces the number of heuristic parameters (i.e.learning rates or steps of conjugate gradient descent), and can potentially result in speed-ups.In the next section we present background material on factor analysis and the EM al-gorithm. This is followed by the derivation of the learning algorithm for mixture of factoranalyzers in section 3. We close with a discussion in section 4.2 Factor AnalysisIn maximum likelihood factor analysis (FA), a p-dimensional real-valued data vector x ismodeled using a k-dimensional vector of real-valued factors, z, where k is generally muchsmaller than p (Everitt, 1984). The generative model is given by:x = �z+ u; (1)where � is known as the factor loading matrix (see Figure 1). The factors z are assumedto be N (0; I) distributed (zero-mean independent normals, with unit variance). The p-dimensional random variable u is distributed N (0;	), where 	 is a diagonal matrix. Thediagonality of 	 is one of the key assumptions of factor analysis: The observed variables areindependent given the factors. According to this model, x is therefore distributed with zeromean and covariance ��0 + 	; and the goal of factor analysis is to �nd the � and 	 thatbest model the covariance structure of x. The factor variables z model correlations betweenthe elements of x, while the u variables account for independent noise in each element of x.The k factors play the same role as the principal components in PCA: They are infor-mative projections of the data. Given � and 	, the expected value of the factors can be2



computed through the linear projection:E(zjx) = �x; (2)where � � �0(	 + ��0)�1, a fact that results from the joint normality of data and factors:P  " xz #! = N  " 00 # ; " ��0 +	 ��0 I #! : (3)Note that since 	 is diagonal, the p� p matrix (	 + ��0), can be e�ciently inverted usingthe matrix inversion lemma:(	 + ��0)�1 = 	�1 �	�1�(I + �0	�1�)�1�0	�1;where I is the k � k identity matrix. Furthermore, it is possible (and in fact necessary forEM) to compute the second moment of the factors,E(zz0jx) = Var(zjx) + E(zjx)E(zjx)0= I � ��+ �xx0� 0; (4)which provides a measure of uncertainty in the factors, a quantity that has no analogue inPCA.The expectations (2) and (4) form the basis of the EM algorithm for maximum likelihoodfactor analysis (see Appendix A and Rubin & Thayer, 1982):E-step: Compute E(zjxi) and E(zz0jxi) for each data point xi, given � and 	.M-step: �new =  nXi=1 xiE(zjxi)0! nXl=1 E(zz0jxl)!�1 (5)	new = 1ndiag( nXi=1 xix0i � �newE[zjxi]x0i) ; (6)where the diag operator sets all the o�-diagonal elements of a matrix to zero.3 Mixture of Factor AnalyzersAssume we have a mixture of m factor analyzers indexed by !j , j = 1; : : : ;m. The generativemodel now obeys the following mixture distribution (see Figure 2):P (x) = mXj=1 Z P (xjz; !j)P (zj!j)P (!j)dz: (7)As in regular factor analysis, the factors are all assumed to be N (0; I) distributed, therefore,P (zj!j) = P (z) = N (0; I): (8)3



����z����! ����x	-SSSSw ����/� �j;�jFigure 2: The mixture of factor analysis generative model.Whereas in factor analysis the data mean was irrelevant and was subtracted before �tting themodel, here we have the freedom to give each factor analyzer a di�erent mean, �j , therebyallowing each to model the data covariance structure in a di�erent part of input space,P (xjz; !j) = N (�j + �jz;	): (9)The parameters of this model are f(�j;�j)mj=1;�;	g; 1 the vector � parametrizes theadaptable mixing proportions, �j = P (!j). The latent variables in this model are the factorsz and the mixture indicator variable !, where wj = 1 when the data point was generatedby !j. For the E-step of the EM algorithm, one needs to compute expectations of allthe interactions of the hidden variables that appear in the log likelihood. Fortunately, thefollowing statements can be easily veri�ed,E[wjzjxi] = E[wjjxi] E[zj!j;xi] (10)E[wjzz0jxi] = E[wjjxi] E[zz0j!j ;xi]: (11)De�ning hij = E[wjjxi] / P (xi; !j) = �jN (xi � �j ;�j�0j +	) (12)and using equations (2) and (10) we obtainE[wjzjxi] = hij �j (xi � �j); (13)where �j � �0j(	 + �j�0j)�1. Similarly, using equations (4) and (11) we obtainE[wjzz0jxi] = hij �I � �j�j + �j(xi � �j)(xi � �j)0� 0j� : (14)The EM algorithm for mixtures of factor analyzers therefore becomes:E-step: Compute hij , E[zjxi; !j ] and E[zz0jxi; !j] for all data points i and mixturecomponents j.M-step: Solve a set of linear equations for �j, �j , �j and 	 (see Appendix B).The mixture of factor analyzers is, in essence, a reduced dimensionality mixture of Gaus-sians. Each factor analyzer �ts a Gaussian to a portion of the data, weighted by the posteriorprobabilities, hij. Since the covariance matrix for each Gaussian is speci�ed through thelower dimensional factor loading matrices, the model has mkp+ p, rather than mp(p+1)=2,parameters dedicated to modeling covariance structure.1Note that each model can also be allowed to have a separate 	 matrix. This, however, changes itsinterpretation as sensor noise. 4



4 DiscussionWe have described an EM algorithm for �tting a mixture of factor analyzers. Matlab sourcecode for the algorithm can be obtained from ftp://ftp.cs.toronto.edu/pub/zoubin/mfa.tar.gz. An extension of this architecture to time series data, in which both the factorsz and the discrete variables ! depend on their value at a previous time step, is currentlybeing developed.One of the important issues not addressed in this note is model selection. In �tting amixture of factor analyzers the modeler has two free parameters to decide: The number offactor analyzers to use (m), and the number of factor in each analyzer (k). One methodby which these can be selected is cross-validation: several values of m and k are �t to thedata and the log likelihood on a validation set is used to select the �nal values. Greedymethods based on pruning or growing the mixture may be more e�cient at the cost ofsome performance loss. Alternatively, a full-edged Bayesian analysis, in which these modelparameters are integrated over, may also be possible.AcknowledgementsWe thank C. Bishop for comments on the manuscript. The research was funded by grantsfrom the Canadian Natural Science and Engineering Research Council and the OntarioInformation Technology Research Center. GEH is the Nesbitt-Burns fellow of the CanadianInstitute for Advanced Research.A EM for Factor AnalysisThe expected log likelihood for factor analysis isQ = E "logYi (2�)p=2j	j�1=2 expf�12[xi � �z]0	�1[xi � �z]g#= c� n2 log j	j �Xi E �12x0i	�1xi � x0i	�1�z+ 12z0�0	�1�z�= c� n2 log j	j �Xi �12x0i	�1xi � x0i	�1� E[zjxi] + 12 tr h�0	�1� E[zz0jxi]i� ;where c is a constant, independent of the parameters, and tr is the trace operator.To re-estimate the factor loading matrix we set@Q@� = �Xi 	�1xiE[zjxi]0 +Xl 	�1�newE[zz0jxl] = 0obtaining �new  Xl E[zz0jxl]0! = Xi xiE[zjxi]05



from which we get equation (5).We re-estimate the matrix 	 through its inverse, setting@Q@	�1 = n2	new �Xi �12xix0i ��newE[zjxi] x0i + 12�newE[zz0jxi]�new0� = 0:Substituting equation (5),n2	new = Xi 12xix0i � 12�newE[zjxi] x0iand using the diagonal constraint,	new = 1ndiag(Xi xix0i � �newE[zjxi]x0i) :B EM for Mixture of Factor AnalyzersThe expected log likelihood for mixture of factor analysis isQ = E 24logYi Yj �(2�)p=2j	j�1=2 expf�12[xi � �j � �jz]0	�1[xi � �j � �jz]g�wj35To jointly estimate the mean �j and the factor loadings �j it is useful to de�ne anaugmented column vector of factors ~z = " z1 #and an augmented factor loading matrix ~�j = [�j �j]. The expected log likelihood is thenQ = E 24logYi Yj �(2�)p=2j	j�1=2 expf�12[xi � ~�j~z]0	�1[xi � ~�j~z]g�wj35= c� n2 log j	j �Xi;j 12hijx0i	�1xi � hijx0i	�1~�j E[~zjxi; !j] + 12hij tr h~�0j	�1~�j E[~z~z0jxi; !j ]iwhere c is a constant. To estimate ~�j we set@Q@~�j = �Xi hij	�1xiE[~zjxi; !j]0 + hij	�1~�newj E[~z~z0jxi; !j] = 0:This results in a linear equation for re-estimating the means and factor loadings,h�newj �newj i = ~�newj =  Xi hijxiE[~zjxi; !j]0! Xl hljE[~z~z0jxl; !j ]!�1 (15)6



where E[~zjxi; !j ] = " E[zjxi; !j]1 #and E[~z~z0jxl; !j] = " E[zz0jxl; !j] E[zjxl; !j ]E[zjxl; !j]0 1 # :We re-estimate the matrix 	 through its inverse, setting@Q@	�1 = n2	new �Xij 12hijxix0i � hij ~�newj E[~zjxi; !j ]x0i + 12hij ~�newj E[~z~z0jxi; !j ]~�new0j = 0:Substituting equation (15) for ~�j and using the diagonal constraint on 	 we obtain,	new = 1ndiag8<:Xij hij �xi � ~�newj E[~zjxi; !j]�x0i9=; : (16)Finally, to re-estimate the mixing proportions we use the de�nition,�j = P (!j) = Z P (!j jx)P (x) dx:Since hij = P (!jjxi), using the empirical distribution of the data as an estimate of P (x) weget �newj = 1n nXi=1 hij:ReferencesBregler, C. and Omohundro, S. M. (1994). Surface learning with applications to lip-reading.In Cowan, J. D., Tesauro, G., and Alspector, J., editors, Advances in Neural InformationProcessing Systems 6, pages 43{50. Morgan Kaufman Publishers, San Francisco, CA.Duda, R. O. and Hart, P. E. (1973). Pattern Classi�cation and Scene Analysis. Wiley, NewYork.Everitt, B. S. (1984). An Introduction to Latent Variable Models. Chapman and Hall,London.Hinton, G., Revow, M., and Dayan, P. (1995). Recognizing handwritten digits using mixturesof Linear models. In Tesauro, G., Touretzky, D., and Leen, T., editors, Advances inNeural Information Processing Systems 7, pages 1015{1022. MIT Press, Cambridge,MA.Hinton, G. E., Dayan, P., and Revow, M. (1996). Modeling the manifolds of Images ofhandwritten digits. Submitted for Publication.7
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