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Abstract

Bayesian learning in undirected graphical
models—computing posterior distributions
over parameters and predictive quantities—
is exceptionally difficult. We conjecture
that for general undirected models, there are
no tractable MCMC (Markov Chain Monte
Carlo) schemes giving the correct equilib-
rium distribution over parameters. While
this intractability, due to the partition func-
tion, is familiar to those performing param-
eter optimisation, Bayesian learning of pos-
terior distributions over undirected model
parameters has been unexplored and poses
novel challenges. We propose several approx-
imate MCMC schemes and test on fully ob-
served binary models (Boltzmann machines)
for a small coronary heart disease data set
and larger artificial systems. While approx-
imations must perform well on the model,
their interaction with the sampling scheme
is also important. Samplers based on vari-
ational mean-field approximations generally
performed poorly, more advanced methods
using loopy propagation, brief sampling and
stochastic dynamics lead to acceptable pa-
rameter posteriors. Finally, we demonstrate
these techniques on a Markov random field
with hidden variables.

1 Introduction

Probabilistic graphical models are an elegant and pow-
erful framework for representing distributions over
many random variables. Undirected graphs provide
a natural description of soft constraints between vari-
ables. Mutual compatibilities amongst variables, x =
(x1, . . . xk), are described by a factorised joint proba-

bility distribution:

p(x|θ) =
1

Z(θ)
exp







∑

j

φj(xCj
, θj)







, (1)

where Cj ⊂ {1, . . . , k} indexes a subset of the variables
and φj is a potential function, parameterised by θj ,
expressing compatibilities amongst xCj

. The partition

function or normalisation constant

Z(θ) =
∑

x

exp
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(2)

is the (usually intractable) sum or integral over all
configurations of the variables. The undirected model
representing the conditional independencies implied by
the factorization (1) has a node for each variable and
an undirected edge connecting every pair of variables
xi—x`, if i, ` ∈ Cj for some j. The subsets Cj are
therefore cliques (fully connected subgraphs) of the
whole graph. An alternative and more general rep-
resentation of undirected models is a factor graph.
Factor graphs are bipartite graphs consisting of two
types of nodes, one type representing the variables
i ∈ {1, . . . , k} and the other type the factors j appear-
ing in the product (1). A variable node i is connected
via an undirected edge to a factor node j if i ∈ Cj .

This work focuses on representing the parameter pos-
terior p(θ|x) using samples, which can be used in ap-
proximating distributions over predictive quantities.
Averaging over the parameter posterior can avoid the
overfitting associated with optimisation. While sam-
pling from parameters has attracted much attention,
and is often tractable, in directed models, it is much
more difficult for all but the most trivial1 undirected

graphical models. While directed models are a more
natural tool for modelling causal relationships, the soft
constraints provided by undirected models have proven

1i.e., low tree-width graphs, graphical Gaussian models
and small contingency tables.



useful in a variety of problem domains; we briefly men-
tion six applications.

(a) In computer vision [1] Markov random fields
(MRFs), a form of undirected model, are used to
model the soft constraint a pixel or image feature im-
poses on nearby pixels or features; this use of MRFs
grew out of a long tradition in spatial statistics [2].
(b) In language modelling a common form of sen-
tence model measures a large number of features of
a sentence fj(s), such as the presence of a word,
subject-verb agreement, the output of a parser on
the sentence, etc, and assigns each such feature a
weight λj . A random field model of this is then
p(s|λ) = (1/Z(λ)) exp{∑j λjfj(s)} where the weights
can be learned via maximum likelihood iterative scal-
ing methods [3]. (c) These undirected models can
be extended to coreference analysis, which deals with
determining, for example, whether two items (e.g.,
strings, citations) refer to the same underlying ob-
ject [4]. (d) Undirected models have been used to
model protein folding [5] and the soft constraints on
the configuration of protein side chains [6]. (e) Semi-
supervised classification is the problem of classifying a
large number of unlabelled points using a small num-
ber of labelled points and some prior knowledge that
nearby points have the same label. This problem
can be approached by defining an undirected graph-
ical model over both labelled and unlabelled data
[7]. (f) Given a set of directed models p(x|θj), the
products of experts idea is a simple way of defining
a more powerful (undirected) model by multiplying
them: p(x|θ) = (1/Z(θ))

∏

j p(x|θj) [8]. The prod-
uct assigns high probability when there is consensus
among component models.

Despite the long history and wide applicability of undi-
rected models, surprisingly, Bayesian treatments of
large undirected models are virtually non-existent! In-
deed there is a related statistical literature on Bayesian
inference in undirected models, log linear models, and
contingency tables [9, 10, 11]. However, this literature
assumes that the partition function Z(θ) can be com-
puted exactly. But for all six machine learning applica-
tions of undirected models cited above, this assump-
tion is unreasonable. This paper addresses Bayesian
learning for models with intractable Z(θ).

We focus on a particularly simple and well-studied
undirected model, the Boltzmann machine.

2 Bayesian Inference in Boltzmann

Machines

A Boltzmann machine (BM) is a Markov random field
which defines a probability distribution over a vector

of binary variables s = [s1, . . . , sk] where si ∈ {0, 1}:

p(s|W ) =
1

Z(W )
exp







∑

i<j

Wijsisj







(3)

The symmetric weight matrix W parameterises this
distribution. In a BM there are usually also linear bias
terms

∑

i bisi in the exponent; we omit these biases to
simplify notation, although the models in the experi-
ments assume them. The undirected model for a BM
has edges for all non-zero elements of W . Since the
Boltzmann machine has only pairwise terms in the ex-
ponent, factor graphs provide a better representation
for the model.

The usual algorithm for learning BMs is a maximum
likelihood version of the EM algorithm (assuming some
of the variables are hidden sH and some observed sO)
[12]. The gradient of the log probability is:

∂ log p(s|W )

∂Wij

= 〈sisj〉c − 〈sisj〉u (4)

where 〈·〉c denotes expectation under the “clamped”
data distribution p(sH |sO,W ) and 〈·〉u denotes ex-
pectation under the “unclamped” distribution p(s|W ).
For a data set S = [s(1) . . . s(n) . . . s(N)] of i.i.d. data
the gradient of the log likelihood is simply summed
over n. For Boltzmann machines with large tree-
width these expectations would take exponential time
to compute, and the usual approach is to approximate
them using Gibbs sampling or one of many more recent
approximate inference algorithms.

Consider doing Bayesian inference for the parameters
of a Boltzmann machine, i.e., computing p(W |S). One
can define a joint model:

p(W,S) =
1

Z
exp







− 1

2σ2

∑

j<i

W 2
ij +

∑

n

∑

j<i

Wijs
(n)
i s

(n)
j







(5)
The first term acts like a prior, the normaliser Z does
not depend on W , and it is easy to see that p(S|W )
is exactly the likelihood term for a Boltzmann ma-
chine with i.i.d. data: p(S|W ) =

∏

n p(s(n)|W ) =
∏

n(1/Z(W )) exp{∑i<j Wijs
(n)
i s

(n)
j }. Moreover, it is

very easy to sample from p(W |S) since it is a multivari-
ate Gaussian. Thus it appears that we have defined a
joint distribution where the likelihood is exactly the
BM model, and the posterior over parameters is triv-
ial to sample from. Could Bayesian inference in Boltz-
mann machines be so simple?

Unfortunately, there is something deeply flawed with
the above approach. By marginalisation of (5), the



actual prior over the parameters must have been

p(W ) =
∑

S

p(W,S) ∝ N (0, σ2I)Z(W )N . (6)

However, this “prior” is dependent on the size of the
data set! Moreover, the parametric form of the “prior”
is very complicated, favouring weights with large par-
tition functions—an effect that will overwhelm the
Gaussian term. This is therefore not a valid hierar-
chical Bayesian model for a BM, and inferences from
this model will be essentially meaningless.

The lesson from this simple example is the following:
it is not possible to remove the partition function from
the parameter posterior, as the “prior” that this would
imply will be dependent on the number of data points.
In order to have sensible parameter inferences, there-
fore, considering changes of the partition function with
the parameters is unavoidable. Fortunately, there ex-
ist a large number of tools for approximating partition
functions and their derivatives, given by expectations
under (1). We now examine how approximations to
partition functions and expectations can be used for
approximate Bayesian inference in undirected models.

3 Monte Carlo Parameter Sampling

MCMC (Markov Chain Monte Carlo) methods allow
us to draw correlated samples from a probability dis-
tribution with unknown normalisation. A rich set of
methods are available [13], but as discussed above any
scheme must compute a quantity related to the parti-
tion function before making any change to the parame-
ters. We discuss two simple samplers that demonstrate
the range of approximate methods available.

Consider the simplest Metropolis sampling scheme for
the parameters of a Boltzmann machine given fully ob-
served data. Starting from parameters W , assume that
W ′ is proposed from a symmetric proposal distribution
t(W ′|W ) = t(W |W ′). This proposal should be ac-
cepted with probability a = min(1, p(W ′|S)/p(W |S))
where

p(W ′|S)

p(W |S)
=

p(W ′)p(S|W ′)

p(W )p(S|W )
(7)

=
p(W ′)

p(W )

(

Z(W )

Z(W ′)

)N

exp
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n,i<j

(W ′
ij− Wij) s

(n)
i s

(n)
j







.

For general BMs even a single step of this simple
scheme is intractable due to Z(W ). One class of ap-
proach we will pursue is using deterministic tools to
approximate Z̃(W ) ' Z(W ) in the above expression.
Clearly this results in an approximate sampler, which
does not converge to the true equilibrium distribu-
tion over parameters. Moreover, it seems reckless to

take an approximate quantity to the N th power. De-
spite these caveats we explore empirically whether ap-
proaches based on this class of approximation are vi-
able.

Note that above we need only compute the ratio of
the partition function at pairs of parameter settings,
Z(W )/Z(W ′). This ratio can be approximated di-
rectly by noting that:

Z(W )

Z(W ′)
=

∑

s

e{
∑

j<i
(Wij−W ′

ij)sisj} e{
∑

j<i
W ′

ijsisj}

Z(W ′)

≡
〈

exp







∑

j<i

(Wij − W ′
ij)sisj







〉

p(s|W ′)

(8)

where 〈·〉p denotes expectation under p. Thus any
method for sampling from p(s|W ′), such as MCMC
methods, exact sampling methods, or any determinis-
tic approximation that can yield the above expectation
can be nested into the Metropolis sampler for W .

The Metropolis scheme is often not an efficient way
of sampling from continuous spaces as it suffers from
“random-walk” behaviour. That is, it typically takes
at least order t steps to travel a distance of

√
t.

Schemes exist that use gradient information to reduce
this behaviour by simulating a stochastic dynamical
system [13]. The simplest of these is the “uncorrected
Langevin method”. Parameters are updated without
any rejections according to the rule:

θ′i = θi +
ε2

2

∂

∂θi

log p(x, θ) + εni, (9)

where ni are independent draws from a zero-mean unit
variance Gaussian. Intuitively this rule performs gra-
dient descent but explores away from the optimum
through the noise term. Strictly this is only an ap-
proximation except in the limit of vanishing ε. A cor-
rected version would require knowing Z(W ) as well as
the gradients. This effort may not be justified when
the gradients and Z(W ) are only available as approxi-
mations. However approximate correction would allow
use of the more general hybrid Monte Carlo method.

Using the above or other dynamical methods, a third
target for approximation for systems with continuous
parameters is the gradient of the joint log probability.
In the case of BMs, we have:

∂ log p(S,W )

∂Wij

=
∑

n

s
(n)
i s

(n)
j −N〈sisj〉p(s|W )+

∂ log p(W )

∂Wij

(10)
Assuming an easy to differentiate prior, the main dif-
ficulty arises, as in (4), from computing the middle
term: the unclamped expectations over the variables.



Interestingly, although many learning algorithms for
undirected models (e.g. 4) are based on computing gra-
dients of the form (10), and it would be simple to plug
these into approximate stochastic dynamics MCMC
methods to do Bayesian inference, this approach does
not appear to have been investigated. We explore this
approach in our experiments.

We have taken two existing sampling schemes
(Metropolis and Langevin) and identified three targets
for approximation to make these schemes tractable
(Z(W ), Z(W )/Z(W ′) and 〈sisj〉p(s|W )). While our
explicit derivations have focused on Boltzmann ma-
chines, these same expressions generalise in a straight-
forward way to Bayesian parameter inference in a gen-
eral undirected model of the form (1). In particular,
many undirected models of interest can be parame-
terised to have potentials in the exponential family,
φj(xCj

, θj) = uj(xCj
)>θj . For such models, the key

ingredient to an approximation are the expected suffi-
cient statistics, 〈uj(xCj

)〉.

4 Approximation Schemes

Using the above concepts and focusing on Boltzmann
machines we now define a variety of approximate sam-
pling methods, by deriving approximations to one of
our three target quantities in equations (7), (8) and
(10).

Naive mean field. Using Jensen’s inequality we can
lower bound the log partition function as follows:

log Z(W ) = log
∑

s

exp{
∑

j<i

Wijsisj}

≥
∑

j<i

Wij〈sisj〉q(s) + H(q) ≡ F (W, q)
(11)

where q(s) is any distribution over the variables, and
H(q) is the entropy of this distribution. Defining the
set of fully factorised distributions Qmf = {q : q(s) =
∏

i qi(si)} we can find a local maximum of this lower
bound log Zmf(W ) = maxq∈Qmf

F (W, q) using an it-
erative and tractable mean-field algorithm. We de-
fine the mean-field Metropolis algorithm as using
Zmf(W ) in place of Z(W ) in the acceptance proba-
bility computation (7). The expectations from the
naive mean field algorithm could also be used to com-
pute direct approximations to the gradient for use in
a stochastic dynamics method (10).

Tree-structured variational approximation.
Jensen’s inequality can be used to obtain much
tighter bounds than those given by the naive mean-
field method. For example, constraining q to be in
the set of all tree-structured distributions Qtree we
can still tractably optimise the lower bound on the

partition function [14], obtaining Ztree(W ) ≤ Z(W ).
The tree Metropolis algorithm is defined to use
this in (7). Alternatively, expectations under the tree
could also be used to form the gradient estimate for a
stochastic dynamics method (10).

Bethe approximation. A recent justification for ap-
plying belief propagation to graphs with cycles is the
relationship between this algorithm’s messages and the
fixed points of the Bethe free energy [15]. While this
breakthrough gave a new approximation for the parti-
tion function, we are unaware of any work using it for
Bayesian model selection. In the loopy Metropolis
algorithm belief propagation is run on each proposed
system, and the Bethe free energy is used to approxi-
mate the acceptance probability (7). Traditionally be-
lief propagation is used to compute marginals; pairwise
marginals can be used to compute the expectations
used in gradient methods (10) or in finding partition
function ratios (8). These approaches lead to different
algorithms, although their approximations are clearly
closely related.

Langevin using brief sampling. The pairwise
marginals required in (9,10) can be approximated by
MCMC sampling. The Gibbs sampler used in section
6.1 is a popular choice, whereas in section 6.2 a more
sophisticated Swendsen-Wang sampler is employed.
Unfortunately—as in maximum likelihood learning
(4)—the parameter-dependent variance of these esti-
mates can hinder convergence and introduce biases [8].
The brief Langevin algorithm, inspired by work on
Contrastive Divergence, uses very brief sampling start-
ing from the data, S, which gives biased but low vari-
ance estimates of the required expectations. As the
approximations in this section are run as an inner loop
to the main sampler, the cheapness of brief sampling
makes it an attractive option.

Langevin using exact sampling2. Unbiased expec-
tations can be obtained in some systems using an exact
sampling algorithm based on coupling from the past,
eg [16]. Again variance could be eliminated by reuse
of random numbers. This seems a promising area for
future research.

Pseudo-Likelihood. Replacing the likelihood of the
parameters with a tractable product of conditional
probabilities is a common approximation in Markov
random fields for image modelling. The only Bayesian
approach to learning in large systems of which we are
aware is in this context [17, 18]. The models used in
our experiments (section 6.1) were not well approxi-
mated by the pseudo-likelihood, so we did not explore
it further.

2Suggested by David MacKay.



5 Extension to Hidden Variables

So far we have only considered models of the form
p(x|θ) where all variables, x, are observed. Often mod-
els need to cope with missing data, or have variables
that are always hidden. These are often the models
that would most benefit from a Bayesian approach to
learning the parameters. In fully observed models in
the exponential family the parameter posteriors are
often relatively simple as they are log concave if the
prior used is also log concave (as seen later in figure 1).
The parameter posterior with hidden variables will be
a linear combination of log concave functions, which
need not be log concave and can be multi-modal.

In theory the extension to hidden variables is simple.
First consider a model p(x,h|θ), where h are unob-
served variables. The parameter posterior is still pro-
portional to p(x|θ)p(θ), and we observe

p(x|θ) =
∑

h

p(x,h|θ)

=
1

Z(θ)

∑

h

exp







∑

j

φj((x,h)Cj
, θj)







log p(x|θ) = − log(Z(θ)) + log(Zx(θ)). (12)

That is, the sum in the second term is a partition
function, Zx, for an undirected graph of the variables
h. To see this compare to (2) and consider the fixed
observations x as parameters of the potential func-
tions. In a system with multiple i.i.d. observations Zx

must be computed for each setting of x. Note however
that these additional partition function evaluations are
for systems smaller than the original. Therefore, any
method that approximates Z(W ) or related quantities
directly from the parameters can still be used for pa-
rameter learning in systems with hidden variables.

The brief sampling and pseudo-likelihood approxima-
tions rely on settings of every variable provided by the
data. For systems with hidden variables these meth-
ods could use settings from samples conditioned on
the observed data. In some systems this sampling can
be performed easily [8]. In section 6.2 several steps
of MCMC sampling over the hidden variables are per-
formed in order to apply our brief Langevin method.

6 Experiments

6.1 Fully observed models

Our approximate samplers were tested on three sys-
tems. The first, taken from [19], lists six binary prop-
erties detailing risk factors for coronary heart disease
in 1841 men. Modelling these variables as outputs of a

fully-connected Boltzmann machine, we attempted to
draw samples from the distribution over the unknown
weights. We can compute Z(W ) exactly in this sys-
tem, which allows us to compare methods against a
Metropolis sampler with an exact inner loop. A previ-
ous Bayesian treatment of these data also exists [10].

Many practical applications may only need a few tens
of samples from the weights. We performed sampling
for 100,000 iterations to obtain histograms for each
of the weights (Figure 1). The mean-field, tree and
loopy Metropolis methods each proposed changes to
one parameter at a time using a zero-mean Gaussian
with variance 0.01. The brief Langevin method used
a step-size ε = 0.01. Qualitatively the results are the
same as [10], parameters deemed important have very
little overlap with zero.

The mean-field Metropolis algorithm failed to con-
verge, producing noisy and wide histograms over an
ever increasing range of weights (figure 1). The sam-
pler with the tree-based inner loop did not always con-
verge either and when it did, its samples did not match
those of the exact Metropolis algorithm very well. The
loopy Metropolis and brief Langevin methods closely
match the marginal distributions predicted by the ex-
act Metropolis algorithm for most of the weights. Re-
sults are not shown for algorithms using expectations
from loopy belief propagation in (10) or (8) as these
gave almost identical performance to loopy Metropolis
based on (7).

Our other two test systems are 100-node Boltzmann
machines and demonstrate learning where exact com-
putation of Z(W ) is intractable3. We considered two
randomly generated systems, one with 204 edges and
another with 500. Each of the parameters not set to
zero, including the 100 biases, was drawn from a unit
Gaussian. Experiments on an artificial system allow
comparisons with the true weight matrix. We ensured
our training data were drawn from the correct distri-
bution with an exact sampling method [16]. This level
of control would not be available on a natural data set.

The loopy Metropolis algorithm and the brief
Langevin method were applied to 100 data points from
each system. The model structure was provided, so
that only non-zero parameters were learned. Figure 2
shows a typical histogram of parameter samples, the
predictive ability over all parameters is also shown.
Short runs on similar systems with stronger weights
show that loopy Metropolis can be made to perform
arbitrarily badly more quickly than the brief Langevin
method on this class of system.

3These test sets are available online:
http://www.gatsby.ucl.ac.uk/~iam23/04blug/
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Figure 1: Histograms of samples for every parameter in the heart disease risk factor model. Results from exact
Metropolis are shown in solid (blue); loopy Metropolis dashed (purple); brief Langevin dotted (red). These
curves are often indistinguishable. The mean-field and tree Metropolis algorithms performed very badly; to
reduce clutter these are only shown once each in the plots for WAA and WAB respectively, shown in dash-dotted
(black).
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Figure 2: Loopy Metropolis is shown dashed (blue), brief Langevin solid (black). Left: an example histogram as
in Figure 1 for the 204 edge BM; the vertical line shows the true weight. Also shown are the fractions of samples,
f , within ±0.1 of the true value for every parameter in the 204 edge system (centre) and the 500 edge system
(right). The parameters are sorted by f for clarity. Higher curves indicate better performance.

6.2 Hidden variables

Finally we consider an undirected model approach
taken from work on semi-supervised learning [7]. Here
a graph is defined using the 2D positions, X =
{(xi, yi)}, of unlabelled and labelled data. The vari-
ables on the graph are the class labels, S = {si}, of
the points. The joint model for the l labelled points
and u unobserved or hidden variables is

p(S|X,σ) =
1

Z(σ)
exp







l+u
∑

i=1

∑

j<i

δ(si, sj)Wij(σ)







(13)
where

Wij(σ) = exp

(

−1

2

(

(xi−xj)
2

σ2
x

+
(yi−yj)

2

σ2
y

))

. (14)

The edge weights of the model, Wij , are functions of
the Euclidean distance between points i and j mea-
sured with respect to scale parameters σ = (σx, σy).
Nearby points wish to be classified in the same way,
whereas far away points may be approximately uncor-
related, unless linked by a bridge of points in between.

The likelihoods in this model can be interesting func-
tions of σ [7], leading to non-Gaussian and possi-
bly multi-modal parameter posteriors with any simple
prior. As the likelihood is often a very flat function
over some parameter regions, the MAP parameters can
change dramatically with small changes in the prior.
There is also the possibility that no single settings of
the parameters can capture our knowledge.

For binary classification (13) can be rewritten as a
standard Boltzmann Machine. The edge weights Wij



are now all coupled through σ, so our sampler will only
explore a two-dimensional parameter space (σx, σy).
However, little of the above theory is changed by this:
we can still approximate the partition function and
use this in a standard Metropolis scheme, or apply
Langevin methods based on (10) where gradients in-
clude sums over edges.

Figure 3(a) shows an example data set for this prob-
lem. This toy data set is designed to have an inter-
pretable posterior over σ and demonstrates the type of
parameter uncertainty observed in real problems. We
can see intuitively that we do not want σx or σy to be
close to zero. This would disconnect all points in the
graph making the likelihood small (≈ 1/2l). Parame-
ters that correlate nearby points that are the same will
be much more probable under a large range of sensi-
ble priors. Neither can both σx and σy be large: this
would force the × and ◦ clusters to be close, which
is also undesirable. However, one of σx and σy can
be large as long as the other stays below around one.
These intuitions are closely matched by the results
shown in figure 3(b). This plot shows draws from the
parameter posterior using the brief Langevin method
based on a Swendsen-Wang sampling inner loop de-
scribed in [7]. We also reparameterised the posterior
to take gradients with respect to log(σ) rather than
σ. This is important for any unconstrained gradient
method like Langevin. Note that predictions from typ-
ical samples of σ will vary greatly. For example large
σx predicts the unlabelled cluster in the top left as
mainly ×’s, whereas large σy predicts ◦’s. It would
not be possible to obtain the same predictive distri-
bution over labels with a single ‘optimal’ setting of
the parameters as was pursued in [7]. This demon-
strates how Bayesian inference over the parameters of
an undirected model can have a significant impact on
predictions.

Figure 3(c) shows that loopy Metropolis converges to
a very poor posterior distribution, which does not cap-
ture the long arms in figure 3(b). This is due to poor
approximate partition functions from the inner loop.
The graph induced by W contains many tight cycles,
which cause problems for loopy belief propagation. As
expected, loopy propagation gave sensible posteriors
on other problems where the observed points were less
dense and formed linear chains.

7 Discussion

Although MCMC sampling in general undirected mod-
els is intractable, there are a variety of approximate
methods that can be brought forth to tackle this prob-
lem. We have proposed and explored a range of
such approximations including two variational approx-

imations, brief sampling and the Bethe approxima-
tion, combined with Metropolis and Langevin meth-
ods. Clearly there are many more approximations that
could be explored.

Note that the idea of simply constructing a joint undi-
rected graph including both parameters and variables,
and running approximate inference in this joint graph,
is not a good idea. Marginalising out the variables in
this graph results in “priors” over parameters that de-
pend on the number of observed data points (6), which
is nonsensical.

The mean field and tree-based Metropolis algorithms
performed disastrously even on simple problems. We
believe these failures result from the use of a lower
bound as an approximation. Where the lower bound
is poor, the acceptance probability for leaving that pa-
rameter setting will be exceedingly low. Thus the sam-
pler is often attracted towards extreme regions where
the bound is loose, and does not return.

The Bethe free energy based Metropolis algorithm per-
forms considerably better and gave the best results on
one of our artificial systems. However it also performed
terribly on our final application. In general if an ap-
proximation performs poorly in the inner loop then
we cannot expect good parameter posteriors from the
outer loop. In loopy propagation it is well known that
poor approximations result for frustrated systems, and
systems with large weights or tight cycles.

The typically broader distributions of and less rapid
failure with strong weights of brief Langevin means
that we expect it to be more robust than loopy
Metropolis. It gives reasonable answers on large sys-
tems where the other methods failed. We have several
ideas for how to further improve upon this method,
for example by reusing random seeds, which we plan
to explore.

To summarise, this paper addresses the largely ne-
glected problem of Bayesian learning in undirected
models. We have described and compared a wide
range of approaches to this problem, highlighting some
of the difficulties and solutions. While the problem
is intractable, approximate Bayesian learning should
be possible in many of the applications of undirected
models (a–f section 1). Examining the approximate
parameter optimisation methods currently in use pro-
vides a valuable source of approximations for the quan-
tities found in equations (7), (8) and (10). We have
shown principles for using these equations to design
good MCMC samplers, which should be widely appli-
cable to Bayesian learning in these important uses of
undirected models.
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Figure 3: (a) a data set for semi-supervised learning with 80 variables: two groups of classified points (× and
◦) and unlabelled data (·). (b) 10,000 approximate samples from the posterior of the parameters σx and σy

(equation 13). An uncorrected Langevin sampler using gradients with respect to log(σ) approximated by a
Swendsen-Wang sampler was used. (c) 10,000 approximate samples using Loopy Metropolis.
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