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Motivation

• Large amounts of unlabelled data, small amounts of labelled data

• Labelling/annotating data is expensive

• We want supervised learning methods that can use information in the input
distribution



Example: Images

“cat”



Classification using Unlabelled Data

Assumption: there is information in the data distribution
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Outline

• Graph-based semi-supervised learning

• Active graph-based semi-supervised learning

• Some thoughts on Bayesian semi-supervised learning



Graph-based Semi-supervised Learning
Labeled and Unlabeled Data as a Graph

• Idea: Construct a graph connecting similar
data points

• Let the hidden/observed labels be random
variables on the nodes of this graph (i.e. the
graph is an MRF)

• Intuition: Similar data points have similar
labels

• Information “propagates” from labeled data
points

• Graph encodes intuition

Work with Xiaojin Zhu (U Wisconsin) and John Lafferty (CMU)



The Graph

• nodes: instances in L ∪ U . Binary labels y ∈ {0, 1}n

• edges: local similarity. n× n symmetric weight matrix W assumed given.

• energy: E(y) = 1
2

∑
i,j wij (yi − yj)2

1 1 0 0 happy, low energy

1 00 1 unhappy, high energy



Low energy→ Label Propagation

energy: E(y) = 1
2

∑
i,j wij (yi − yj)2

With no labelled data, then y = 1 or y = 0 is a min energy configuration:

energy=0

Conditioned on labeled data:

energy=4 energy=2 energy=1



Discrete Markov Random Fields

E(y) =
1

2

∑

i,j

wij (yi − yj)2

p(y) ∝ exp(−E(y)) |yL=L
yi ∈ {0, 1}

Graph mincut can find the min energy (MAP) configuration.

Problems: computing the probabilities is expensive, multi-class case is also
harder to compute, and learning W is very hard.

[Zhu & Ghahramani 02] see also [Blum and Chawla 01]



We relaxed this to a
Gaussian random fields



Discrete Markov Random Fields, revisited

p(y) ∝ exp(−E(y)) |yL=L
yi ∈ {0, 1}



Gaussian Random Fields

p(y) ∝ exp(−E(y)) |yL=L
yi ∈ R



Gaussian Random Fields

p(y) ∝ exp(−E(y)) |yL=L

= exp


−1

2

∑

i,j

wij (yi − yj)2

 |yL=L

= exp
(
−y>∆y

)
|yL=L

W =



w11 . . . w1n

· · ·
wn1 . . . wnn


 D =



∑
w1· 0

· · ·
0

∑
wn·




The Laplacian ∆ = D −W

∆ =

[
∆LL ∆LU

∆UL ∆UU

]



The Laplacian

W =



w11 . . . w1n

· · ·
wn1 . . . wnn


 D =



∑
w1· 0

· · ·
0

∑
wn·




This is the combinatorial or graph Laplacian ∆ = D −W

∆ =

[
∆LL ∆LU

∆UL ∆UU

]

The graph Laplacian plays the same role on graphs as the Laplace operator in
other spaces.

For example, in a Cartesian coordinate system, the Laplacian is given by sum
of second partial derivatives of the function

∆f = ∇ · ∇f =
∑

i

∂2f

∂x2i



Gaussian Random Fields

p(y) ∝ exp(−E(y)) |yL=L

= exp


−1

2

∑

i,j

wij (yi − yj)2

 |yL=L

= exp
(
−y>∆y

)
|yL=L

The distribution of yU given yL is Gaussian: yU ∼ N
(
fU ,

1
2(∆UU)−1

)

The mean is fU = −(∆UU)−1∆ULyL



The Mean fU

The mean fU ≡ mode of Gaussian Random Field

≡ min energy state

• “soft labels”, unique

• harmonic

∆f = 0 or fi =

∑
j∼iwijfj∑
j∼iwij

, i ∈ U

0 < fi < 1

• Related to heat kernels etc. in spectral graph theory.



fU Interpretation: Random Walks

P (j|i) =
wij∑
k wik

fi = P (reach label 1|from i)

1

0

i



fU Interpretation: Electric Networks

fi = volt(i)

+1 volt

wij

R  =ij

1

1

0

a



Classification

• naive: threshold fU at 0.5. Classification often unbalanced.

• incorporating Class Priors (heuristic)

e.g. prior: 90% class 1

minimize E(y) = y>∆y
subject to yL = L

and
∑
fU
|U | = 0.9



OCR Ten Digits (|L ∪ U | = 4000)
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20-Newsgroups (PC vs. MAC, |L ∪ U | = 1943)
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Hyperparameter Learning

Learn the graph weights (or hyperparameters):

• wij = exp

(
−∑m

d=1

(xid−xjd)2
σ2
d

)
, length scales;

• kNN unweighted graph, k;

• εNN unweighted graph, ε, etc.;



Hyperparameter Learning

• Minimize entropy on U (maximize label confidence);

• Evidence maximization with Gaussian process classifiers
[tech report CMU-CS-03-175].



Hyperparameter Learning

OCR Digits “1” vs. “2”, |L| = 92, |U | = 2108.

H (bits) GF acc
start 0.6931 94.70 ± 1.19 %
end 0.6542 98.02 ± 0.39 %



An Example Application of Graph-based SSL

Person Identification in Webcam Images:
An Application of Semi-Supervised Learning
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Abstract
An application of semi-supervised learning is
made to the problem of person identification in
low quality webcam images. Using a set of im-
ages of ten people collected over a period of four
months, the person identification task is posed
as a graph-based semi-supervised learning prob-
lem, where only a few training images are la-
beled. The importance of domain knowledge
in graph construction is discussed, and experi-
ments are presented that clearly show the advan-
tage of semi-supervised learning over standard
supervised learning. The data used in the study
is available to the research community to encour-
age further investigation of this problem.

1. Introduction
The School of Computer Science at Carnegie Mellon Uni-
versity has a public lounge, where leftover pizza and other
food items from various meetings converge, to the delight
of students, staff, and faculty. To help monitor the pres-
ence of food in the lounge, a webcam, sometimes called the
FreeFoodCam1, is mounted in a coke machine and trained
upon the table where food is placed. After being spotted
on the webcam, the arrival of (almost) fresh free food is
heralded with instant messages sent throughout the School.

The FreeFoodCam offers interesting opportunities for re-
1http://www.cs.cmu.edu/˜coke, Carnegie Mellon

University internal

Appearing in Proc. of the 22 st ICML Workshop on Learning with
Partially Classified Training Data, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

search in semi-supervised machine learning. This paper
presents an investigation of the problem of person identi-
fication in this low quality video data, using webcam im-
ages of ten people that were collected over a period of sev-
eral months. The results highlight the importance of do-
main knowledge in semi-supervised learning, and clearly
demonstrate the advantages of using both labeled and unla-
beled data over standard supervised learning.

In recent years, there has been a substantial amount of work
exploring how best to incorporate unlabeled data into su-
pervised learning (Zhu, 2005). Several semi-supervised
learning approaches have been proposed for practical ap-
plications in different areas, such as information retrieval,
text classification (Nigam et al., 1998), and bioinformat-
ics (Weston et al., 2004; Shin et al., 2004). In the context
of computer vision, several interesting results have been
obtained for object detection. Levin et al. (2003) intro-
duced a technique based on co-training (Blum & Mitchell,
1998) for fitting visual detectors in a way that requires only
a small quantity of labeled data, using unlabeled data to
improve performance over time. Rosenberg et al. (2005)
present a semi-supervised approach to training object de-
tection systems based on self-training, and perform exten-
sive experiments with a state-of-the-art detector (Schnei-
derman & Kanade, 2002; Schneiderman, 2004a; Schnei-
derman, 2004b) demonstrating that a model trained in this
manner can achieve results comparable to a model trained
in the traditional manner using a much larger set of fully
labeled data.

In this work, we describe a new application of semi-
supervised learning to the problem of person identification
in webcam images, where the video stream has a low frame
rate, and the images are of low quality. Significantly, many
of the images may have no face, as the person could be fac-
ing away from the camera. We discuss the creation of the



The FreeFoodCam

Figure 1. Four typical FreeFoodCam images.

dataset, and the formulation of the semi-supervised learn-
ing problem. The task of face recognition, of course, has
an extensive literature; see (Zhao et al., 2003) for a sur-
vey. However, to the best of our knowledge, person identi-
fication in video data has not been previously attacked us-
ing semi-supervised learning methods. Relatively primitive
image processing techniques are used in our work; we note
that more sophisticated computer vision techniques can be
easily incorporated into the framework, and should only
improve the performance. But the spirit of our contribution
is to argue that semi-supervised learning methods may be
attractive as a complementary tool to advanced image pro-
cessing. The data we have developed and that forms the
basis for the experiments reported here will be made avail-
able to the research community.2

2. The FreeFoodCam Dataset
The dataset consists of 5254 images with one and only one
person in it. Figure 1 shows four typical images from the
data. The task is not trivial:

• The images of each person were captured on multi-
ple days during a four month period. People changed

2Instructions for obtaining the dataset can be found at http:
//www.cs.cmu.edu/˜zhuxj/freefoodcam.

clothes, hair styles, and one person even grew a beard.
We simulate a video surveillance scenario where im-
ages for a group of people are manually labeled in a
few beginning frames, and the people must be recog-
nized on later days. Therefore we choose labeled data
within the first day of a person’s appearance, and test
on the remaining images of the day and all other days.
This is much more difficult than testing only on the
same day, or allowing labeled data to come from all
days.

• The FreeFoodCam is a low quality webcam. Each
frame has 640 × 480 resolution so faces of far away
people are small. The frame rate is a little over 0.5
frames per second, and lighting in the lounge is com-
plex and changing.

• A person could turn their face away from the camera,
and roughly one third of the images contain no face at
all.

Since only a few images are labeled, and all of the test im-
ages are available, the task is a natural candidate for the
application of semi-supervised learning techniques.



Background Extraction

date 10/24 11/13 1/6 1/14 1/20 1/21 1/27
1 128 193 153 474
2 256 193 448
3 288 305 593
4 204 190 394
5 266 41 189 19 515
6 195 34 179 104 512
7 126 163 200 180 70 22 28 789
8 189 66 172 117 15 559
9 189 94 215 69 30 43 640
10 65 143 122 330
total 1841 398 831 1196 384 276 328 5254

Figure 2. Left: mean background image used for background subtraction. Right: breakdown of the 10 subjects by date.

2.1. Data Collection

We asked ten volunteers to appear in seven FreeFoodCam
takes over four months. Not all participants could show up
for every take. The FreeFoodCam is located in the Com-
puter Science lounge, but we received a live camera feed
in our office, and took images from the camera whenever a
new frame was available.

In each take, the participants took turns entering the scene,
walking around, and “acting naturally,” for example by
reading the newspaper or chatting with off-camera col-
leagues, for five to ten minutes per take. As a result, we
collected images where the individuals have varying poses
and are at a range of distances from the camera. We dis-
carded all frames that were corrupted by electronic noise in
the coke machine, or that contained more than one person
in the scene. This latter constraint imposed was to make
the task simple to specify as a first step; there is no reason
that the methods we present below could not be extended
to work with scenes containing multiple people.

2.2. Foreground Color Extraction

To accurately capture the color information of an individual
in the image, based primarily on their clothing, we had to
separate him or her from the background. As computer
vision is not the focus of the work, we used only primitive
image processing methods.

A simple background subtraction algorithm was used to
find the foreground. We computed the per-pixel means
and variances of red, green and blue channels from 294
background images. Figure 2 shows the mean background.
Using the means and variances of the background, we ob-
tained the foreground area in each image by thresholding.
Pixels deviating more than three standard derivations from
the mean were treated as foreground.

To improve the quality of the foreground color histogram,

we processed the foreground area using morphological
transforms (Jain, 1989). Further processing was required
because the foreground derived from background subtrac-
tion often captured only part of the body and contained
background areas. We first removed small islands in the
foreground by applying the open operation with a 7 pixel-
wide square. We then connected vertically-separated pixel
blocks (such as head and lower torso) using the close opera-
tion with a 60-pixel-by-10-pixel rectangular block. Finally,
we made sure the foreground contains the entire person by
enlarging the foreground to include neighboring pixels by
further closing the foreground with a disk of 20 pixels in
radius. And because there is only one person in each im-
age, we discarded all but the largest contiguous block of
pixels in the processed foreground. Figure 3 shows some
processed foreground images.

After this processing the foreground area is represented
by a 100-dimensional vector, which consists of a 50-bin
hue histogram, a 30-bin saturation histogram, and a 20-bin
brightness histogram.

2.3. Face Image Extraction

The face of the person is stored as a small image, which
is derived from the outputs of a face detector (Schneider-
man 2004a; 2004b) . Note that this is not a face recognizer
(a face recognizer was not used for this task). It simply de-
tects the presence of frontal or profile faces, and outputs the
estimated center and radius of the detected face. We took a
square area around the center as the face image. If no face
was detected, the face image is empty. Figure 4 shows a
few face images as determined by the face detector.

2.4. Summary of the Dataset

In summary, the dataset is comprised of 5254 images for
ten individuals, collected during seven takes over four
months. There is a slight imbalance in the class distribu-



Foreground Extraction and Face Detection

Figure 3. Examples of foregrounds extracted by background subtraction and morphological transforms.

Figure 4. Examples of face images detected by the face detector.

tion, and only a subset of individuals are present in each
day (refer to Table 2 for the breakdown). Overall 34% of
the images (1808 out of 5254) do not contain a face.

Each image in the dataset is represented by three features:

Time: The date and time the image was taken.

Color histogram of processed foreground: A 100 di-
mensional vector consisting of three histograms of
the foreground pixels, a 50-bin hue histogram, a 30-
bin saturation histogram, and a 20-bin brightness his-
togram.

Face image: A square color image of the face (if present).
As mentioned above, this feature is missing in about
34% of the images.

3. The Graphs
Graph-based semi-supervised learning depends critically
on the construction and quality of the graph. The graph
should reflect domain knowledge through the similarity
function that is used to assign edges (and their weights).
For the FreeFoodCam data the nodes in the graph are the
images. An edge is formed between two images according
to the following criteria:

1. Time edges. People normally move around in the
lounge at moderate speed, thus adjacent frames are
likely to contain the same person. We represent this
knowledge in the graph by putting an edge between
two images if their time difference is less than a
threshold t1 (usually a few seconds).



A node and its neighbours

image 2910 neighbor 1: time edge neighbor 2: color edge

neighbor 3: color edge neighbor 4: color edge neighbor 5: face edge

Figure 5. A random image and its neighbors in the graph.

2. Color edges. The color histogram is largely deter-
mined by a person’s apparel. We assume people
change clothes on different days, so that the color
histogram tends to be unusable across multiple days.
However, it is an informative feature during a shorter
time period (t2), such as half a day. In the graph for
every image i, we find the set of images having a time
difference between (t1, t2) to i, and connect i with its
kc-nearest neighbors (in terms of cosine similarity on
histograms) in the set. The parameter kc is a small
integer, such as three.

3. Face edges. We use face similarity over longer time
spans. For every image i with a face, we find the set
of images more than t2 apart from i, and connect i
with its kf -nearest neighbor in the set. We use pixel-
wise Euclidean distance between face images, where
the pair of face images is scaled to the same size.

The final graph is the union of the three kinds of edges. The
edges are unweighted. We used t1 = 2 seconds, t2 = 12
hours, kc = 3 and kf = 1 below. Conveniently, these
parameters result in a connected graph.

It is impossible to visualize the whole graph. Instead, we
show the neighbors of a random node in Figure 5.

4. Algorithms
We use the simple Gaussian field and harmonic function
algorithm (Zhu et al., 2003) on the FreeFoodCam dataset.

Let l be the number of labeled images, u the number of
unlabeled images, and n = l + u. The graph is represented
the n × n weight matrixW . Let D be the diagonal degree
matrix with Dii =

∑
j Wij , and define the combinatorial

Laplacian
L = D − W (1)

Let Yl be an l×C label matrix, whereC = 10 is the number
of classes. For i = 1 . . . l, Yl(i, c) = 1 if labeled image i
is in class c, Yl(i, c) = 0 otherwise. Then the harmonic
function solution for the unlabeled data is

Yu = −L−1
uuLulYl (2)

where Luu is the submatrix of L on unlabeled nodes and
so on. Each row of Yu can be interpreted as the collection
of posterior probabilities p(yi = c|Yl) for c = 1 . . . C and
i ∈ U . Classification is carried out by finding the class with
the maximal posterior in each row.

In (Zhu et al., 2003) it has also been shown that incor-
porating class proportion knowledge can be helpful. The
proportion qc of data with label c can be estimated from
the labeled set. In particular, the class mass normalization
(CMN) heuristic scales the posteriors to meet the propor-
tions. That is, one finds a set of coefficients a1, . . . , aC

such that

a1

∑

i∈U

Yu(i, 1) : · · · : aC

∑

i∈U

Yu(i, C) = q1 : · · · : qC

(3)



A walk on the graph

color−→ time−→ face−→

color−→

Figure 7. An example “gradient walk” on the graph. The walk starts from an unlabeled image, through assorted edges, and ends at a
labeled image.

function outperforms the linear kernel SVM baseline (Fig-
ure 8). The accuracy can be improved if we incorporate
class proportion knowledge with the simple CMN heuris-
tic. The class proportion is estimated from labeled data
with Laplace (add one) smoothing.

To demonstrate the importance of using unlabeled data for
semi-supervised learning, we compare the harmonic func-
tion with a minimal unlabeled set of size one. That is,
for each unlabeled point xi, we remove all other unlabeled
points and compute the harmonic function on the labeled
data plus xi. This becomes a supervised learning prob-
lem. The harmonic solution with only one unlabeled point
is equivalent to the standard weighted nearest neighbor al-
gorithm. Since the original graphs are sparse, most unla-
beled points may not have any labeled neighbors. To deal
with this we instead connect xi to its kc nearest labeled
neighbors in the color feature, and kf nearest neighbors in
the face feature, where edges are all unweighted. We tried
various combinations of kc and kf , including those used
in previous experiments. Notice we didn’t use time edge at
all, because it does not make sense with only one unlabeled
point. The results are shown in Figure 9(a) with several dif-
ferent setting of kc and kf . The accuracies are all very low.
Basically this shows that no combination of color and face
works if one only use the labeled data. Therefore we see
that using all the unlabeled data is quite important for our
semi-supervised learning approach.

We assigned all the edges equal weights. A natural exten-
sion is to give certain types of edges more weight than oth-
ers: e.g., perhaps give time-edges more weight than color-

edges. In this case, rather than predicting each example to
be the unweighted average of its neighbors, the prediction
becomes a weighted average. Figure 9(b) shows that by
setting weights judiciously (in particular, giving more em-
phasis to time-edges) one can substantially improve perfor-
mance, especially on smaller samples. A related problem
is to learn the parameters for K-nearest neighbor, i.e. kc

for color edges and kf for face edges. We are currently ex-
ploring methods for learning good graph parameter settings
from a small set of labeled samples.

6. Summary
In this paper we formulated a person identification task in
low quality web cam images as a semi-supervised learning
problem, and presented experimental results. The experi-
mental setup resembles a video surveillance scenario: low
image quality and frame rate; labeled data is scarce and is
only available on the first day of a person’s appearance; fa-
cial information is not always available in the image. Our
experiments demonstrate that the semi-supervised learning
algorithms based on harmonic functions are capable of uti-
lizing the unlabeled data to identify ten individuals with
greater than 80% accuracy. The dataset is now available to
the research community.
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Some results
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(a) harmonic function accuracy (b) harmonic function + CMN accuracy

Figure 8. Harmonic function and CMN accuracy on two graphs. Also shown is the SVM linear kernel baseline. (a) The harmonic func-
tion algorithm significantly outperforms the linear kernel SVM, demonstrating that the semi-supervised learning algorithm successfully
utilizes the unlabeled data to associate people in images with their identities. (b) The semi-supervised learning algorithm classifies even
more accurately by incorporating class proportion knowledge through the CMN heuristic.
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Computation

The basic computation involves solving a sparse linear system of equations.

fU = −(∆UU)−1∆ULyL

Some ways of solving this for large systems:

• Conjugate gradients

• Belief propagation

• Convert the original graph into a much smaller backbone graph (Zhu and
Lafferty 2005)



Other Approaches to Semi-supervised Learning

Caveat: This is a very big field, a lot has happened since 2003!

• Nigam et al. (2000): An EM algorithm for SSL applied to text.

• Szummer and Jaakkola (2001): SSL using Markov random walks on graphs.

• Belkin and Niyogi (2002): regularize f by using the top few eigenvectors of
the Laplacian ∆

• Lawrence and Jordan (2005): a Gaussian process approach similar to
TSVM using a null category noise model.

• Zhou et al (2004) use the loss function
∑
i(fi−yi)2 and the normalised graph

Laplacian D−1/2∆D−1/2 as a regulariser.

• Transductive SVMs (also called Semi-Supervised Support Vector Machines
(S3VM)).



Transductive Support Vector Machines

Instead of finding maximum margin between labelled points, optimize over both
margin and labels of unlabelled points.
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Active Semi-Supervised Learning

[Zhu, Lafferty, Ghahramani, 2003]

Semi-supervised learning uses U to help classification.

Active learning (pool based) selects queries in U to ask for labels.

Put it together, we have a better query selection criterion than naively selecting
the point with maximum label ambiguity.



Active Learning

Select a query to minimize the estimated generalization error, not by
maximum ambiguity.

01

a 0.5

B 0.4



Active Learning

generalization error

err =
∑

i∈U

∑

yi=0,1

(sgn(fi) 6= yi)Ptrue(yi)

approximation
Ptrue(yi = 1)← fi

estimated generalization error

êrr =
∑

i∈U
min (fi, 1− fi)



Active Learning

estimated generalization error after querying xk and receiving label yk

êrr+(xk,yk) =
∑

i∈U
min

(
f
+(xk,yk)
i , 1− f+(xk,yk)

i

)

‘re-train’ is fast for the harmonic function

f
+(xk,yk)
U = fU + (yk − fk)

(∆UU)−1·k
(∆UU)−1kk

select query k∗ s.t.

k∗ = arg mink (1− fk)êrr+(xk,0) + fkêrr+(xk,1)



OCR Digits “1” vs. “2” (|L ∪ U | = 2200)
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20 Newsgroups PC vs. MAC (|L ∪ U | = 1943)
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Part II: Some thoughts on
Bayesian semi-supervised learning



Moving forward...

• We have good methods for transduction.

• But we don’t seem to have a single unified Bayesian framework for inductive
SSL.

• How would we view this problem from a fully Bayesian framework?



Bayesian Semi-Supervised Learning

x inputs, y labels:
p(x, y) = p(x)p(y|x) = p(y)p(x|y)

Usually we assume some model with parameters:

• Discriminative:

p(x, y|θ, φ) = p(x|θ)p(y|x, φ)

SSL possible if θ is somehow related to φ, works well when
p(y|x, φ) is very flexible (e.g. non-parametric, kernel-based).

• Generative:
p(x, y|θ, φ) = p(y|φ)p(x|y, θ)

SSL possible but these methods are not currently widely used.

θ

φx

y

θ

φ

x

y



Bayesian Semi-Supervised Learning

Generative:
p(x, y|θ, φ) = p(y|φ)p(x|y, θ)

Limitations of the Generative approach:

• Often we don’t want to model the full x.
(Solution: maybe we can model some features of x?)

• Our models of p(x|y, θ) are usually too inflexible.
(Solution: use non-parametric methods?)

Some examples:

• Kemp et al (2003) Semi-supervised learning with trees.

• Radford Neal’s entry using Dirichlet Diffusion trees into the NIPS feature
selection competition.

From a Bayesian perspective, semi-supervised learning is just another missing
data problem!



Summary

• Semi-supervised learning with harmonic functions

• Active semi-supervised learning using harmonic functions by minimizing
expected generalization error

• Much research in this area but still some open questions...
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