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Parametric vs Nonparametric Models

• Parametric models assume some finite set of parameters θ. Given the parameters,
future predictions, x, are independent of the observed data, D:

P (x|θ,D) = P (x|θ)

therefore θ capture everything there is to know about the data.

• So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

• Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But they can often be defined by
assuming an infinite dimensional θ. Usually we think of θ as a function.

• The amount of information that θ can capture about the data D can grow as
the amount of data grows. This makes them more flexible.



Why?

• flexibility

• better predictive performance

• more realistic
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Outline

Bayesian nonparametrics has many uses.

Some modelling goals and examples of associated nonparametric Bayesian models:

Modelling Goal Example process
Distributions on functions Gaussian process
Distributions on distributions Dirichlet process

Polya Tree
Clustering Chinese restaurant process

Pitman-Yor process
Hierarchical clustering Dirichlet diffusion tree

Kingman’s coalescent
Sparse latent feature models Indian buffet processes
Survival analysis Beta processes
Distributions on measures Completely random measures
... ...



Gaussian Processes

A Gaussian process defines a distribution P (f) on functions, f , where f is a function
mapping some input space X to <.

f : X → <.

Let f = (f(x1), f(x2), . . . , f(xn)) be an n-dimensional vector of function values
evaluated at n points xi ∈ X . Note f is a random variable.

Definition: P (f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⊂ X ,
the marginal distribution on that finite subset P (f) has a multivariate Gaussian
distribution, and all these marginals are coherent.

We can think of GPs as the extension of multivariate Gaussians to distributions on
functions.



Samples from Gaussian processes with different c(x, x′)
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Dirichlet Processes

• Gaussian processes define a distribution on functions

f ∼ GP(·|µ, c)

where µ is the mean function and c is the covariance function.
We can think of GPs as “infinite-dimensional” Gaussians

• Dirichlet processes define a distribution on distributions (a measure on measures)

G ∼ DP(·|G0, α)

where α > 0 is a scaling parameter, and G0 is the base measure.
We can think of DPs as “infinite-dimensional” Dirichlet distributions.

Note that both f and G are infinite dimensional objects.



Dirichlet Process

Let Θ be a measurable space, G0 be a probability measure on Θ, and α a positive
real number.

For all (A1, . . . AK) finite partitions of Θ,

G ∼ DP(·|G0, α)

means that

(G(A1), . . . , G(AK)) ∼ Dir(αG0(A1), . . . , αG0(AK))

(Ferguson, 1973)



Dirichlet Distribution

The Dirichlet distribution is a distribution on the K-dim probability simplex.

Let p be a K-dimensional vector s.t. ∀j : pj ≥ 0 and
∑K

j=1 pj = 1

P (p|α) = Dir(α1, . . . , αK) def=
Γ(

∑
j αj)∏

j Γ(αj)

K∏
j=1

p
αj−1

j

where the first term is a normalization constant2 and E(pj) = αj/(
∑

k αk)

The Dirichlet is conjugate to the multinomial distribution. Let

c|p ∼ Multinomial(·|p)

That is, P (c = j|p) = pj. Then the posterior is also Dirichlet:

P (p|c = j, α) =
P (c = j|p)P (p|α)

P (c = j|α)
= Dir(α′)

where α′j = αj + 1, and ∀` 6= j : α′` = α`

2Γ(x) = (x− 1)Γ(x− 1) =
R ∞
0 tx−1e−tdt. For integer n, Γ(n) = (n− 1)!



Dirichlet Process

G ∼ DP(·|G0, α) OK, but what does it look like?

Samples from a DP are discrete with probability one:

G(θ) =
∞∑

k=1

πkδθk
(θ)

where δθk
(·) is a Dirac delta at θk, and θk ∼ G0(·).

Note: E(G) = G0

As α→∞, G looks more “like” G0.



Relationship between DPs and CRPs

• DP is a distribution on distributions

• DP results in discrete distributions, so if you draw n points you are likely to get
repeated values

• A DP induces a partitioning of the n points
e.g. (1 3 4) (2 5)⇔ θ1 = θ3 = θ4 6= θ2 = θ5

• Chinese Restaurant Process (CRP) defines the corresponding distribution on
partitions

• Although the CRP is a sequential process, the distribution on θ1, . . . , θn is
exchangeable (i.e. invariant to permuting the indices of the θs): e.g.

P (θ1, θ2, θ3, θ4) = P (θ2, θ4, θ3, θ1)



Chinese Restaurant Process

The CRP generates samples from the distribution on partitions induced by a DPM.

T2T1 T4T3 ...

1
6

5

4
3

2

Generating from a CRP:

customer 1 enters the restaurant and sits at table 1.
K = 1, n = 1, n1 = 1
for n = 2, . . .,

customer n sits at table

{
k with prob nk

n−1+α for k = 1 . . .K

K + 1 with prob α
n−1+α (new table)

if new table was chosen then K ← K + 1 endif
endfor

“Rich get richer” property. (Aldous 1985; Pitman 2002)



Dirichlet Processes: Big Picture

There are many ways to derive the Dirichlet Process:

• Dirichlet distribution

• Urn model

• Chinese restaurant process

• Stick breaking

• Gamma process
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DP: distribution on distributions

Dirichlet process mixture (DPM): a mixture model with infinitely many
components where parameters of each component are drawn from a DP. Useful
for clustering; assignments of points to clusters follows a CRP.



Hierarchical Clustering



Dirichlet Diffusion Trees (DFT)

(Neal, 2001)

In a DPM, parameters of one mixture component are independent of another
components – this lack of structure is potentially undesirable.

A DFT is a generalization of DPMs with hierarchical structure between components.

To generate from a DFT, we will consider θ taking a random walk according to a
Brownian motion Gaussian diffusion process.

• θ1(t) ∼ Gaussian diffusion process starting at origin (θ1(0) = 0) for unit time.
• θ2(t), also starts at the origin and follows θ1 but diverges at some time τd, at

which point the path followed by θ2 becomes independent of θ1’s path.
• a(t) is a divergence or hazard function, e.g. a(t) = 1/(1− t). For small dt:

P (θ diverges ∈ (t, t + dt)) =
a(t)dt

m

where m is the number of previous points that have followed this path.
• If θi reaches a branch point between two paths, it picks a branch in proportion

to the number of points that have followed that path.



Dirichlet Diffusion Trees (DFT)

Generating from a DFT:

Figure from Neal, 2001.



Dirichlet Diffusion Trees (DFT)

Some samples from DFT priors:

Figure from Neal, 2001.



Kingman’s Coalescent

(Kingman, 1982)

A model for genealogies. Working backwards in time from t = 0

• Generate tree with n individuals at leaves by merging lineages backwards in time.

• Every pair of lineages merges independently with rate 1.

• Time of first merge for n individuals is t1 ∼ Exp(n(n− 1)/2), etc

This generates w.p.1. a binary tree where all lineages are merged at t = −∞.

The coalescent results in the limit n → ∞ and is infinitely exchangeable over
individuals and has uniform marginals over tree topologies.

The coalescent has been used as the basis of a hierarchical clustering algorithm by
(Teh, Daumé, Roy, 2007)
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F igure 1: (a) Variables describing the n-coalescent. (b) Sample path from a Brownian diffusion
coalescent process in 1D, circles are coalescent points. (c) Sample observed points from same in
2D, notice the hierarchically clustered nature of the points.

2 Kingman’s coalescent

K ingman’s coalescent is a standard model in population genetics describing the common genealogy
(ancestral tree) of a set of individuals [8, 9]. In its full form it is a distribution over the genealogy of
a countably infinite set of individuals. L ike other nonparametric models (e.g. Gaussian and D irich-
let processes), K ingman’s coalescent is most easily described and understood in terms of its finite
dimensional marginal distributions over the genealogies of n individuals, called n-coalescents. We
obtain K ingman’s coalescent as n  ∞ .

Consider the genealogy of n individuals alive at the present time t = 0. We can trace their ancestry
backwards in time to the distant past t = −∞ . A ssume each individual has one parent (in genetics,
haploid organisms), and therefore genealogies of [n] = { 1, . . . , n } form a directed forest. In general,
at time t ≤ 0, there are m (1 ≤ m ≤ n) ancestors alive. Identify these ancestors with their correspond-
ing sets  1 , . . . ,  m of descendants (we will make this identification throughout the paper). Note that
π(t) = {  1 , . . . ,  m } form a partition of [n], and interpret t   π(t) as a function from ( −∞ , 0] to the
set of partitions of [n]. This function is piecewise constant, left-continuous, monotonic (s ≤ t implies
that π(t) is a refinement of π(s)), and π(0) = { { 1 } , . . . , { n } } (see F igure 1a). Further, π completely
and succinctly characterizes the genealogy; we shall henceforth refer to π as the genealogy of [n].

K ingman’s n-coalescent is simply a distribution over genealogies of [n], or equivalently, over the
space of partition-valued functions like π. More specifically, the n-coalescent is a continuous-time,
partition-valued, Markov process, which starts at { { 1 } , . . . , { n } } at present time t = 0, and evolves
backwards in time, merging (coalescing) lineages until only one is left. To describe the Markov
process in its entirety, it is sufficient to describe the jump process (i.e. the embedded, discrete-time,
Markov chain over partitions) and the distribution over coalescent times. Both are straightforward
and their simplicity is part of the appeal of K ingman’s coalescent. Let  l i ,  r i be the ith pair of
lineages to coalesce, t n − 1 < · · · < t1 < t0 = 0 be the coalescent times and  i = t i − 1 − t i > 0
be the duration between adjacent events (see F igure 1a). Under the n-coalescent, every pair of
lineages merges independently with rate 1. Thus the first pair amongst m lineages merge with rate m

2
 

= m ( m − 1 )
2 . Therefore  i  E xp

  
n − i + 1

2

  
independently, the pair  l i ,  r i is chosen from among

those right after time t i , and with probability one a random draw from the n-coalescent is a binary
tree with a single root at t = −∞ and the n individuals at time t = 0. The genealogy is given as:

π(t) =

 
 

 

{ { 1 } , . . . , { n } } if t = 0;
πt i − 1 −  l i −  r i + (  l i   r i ) if t = t i ;
πt i if t i + 1 < t < t i .

(1)

Combining the probabilities of the durations and choices of lineages, the probability of π is simply:

p(π) =
 n − 1

i = 1

 
n − i + 1

2

 
exp

 
−

 
n − i + 1

2

 
 i

 
/
 

n − i + 1
2

 
=

 n − 1
i = 1 exp

 
−

 
n − i + 1

2

 
 i

 
(2)

The n-coalescent has some interesting statistical properties [8, 9]. The marginal distribution over
tree topologies is uniform and independent of the coalescent times. Secondly, it is infinitely ex-
changeable: given a genealogy drawn from an n-coalescent, the genealogy of any m contemporary
individuals alive at time t ≤ 0 embedded within the genealogy is a draw from the m-coalescent.
Thus, taking n  ∞ , there is a distribution over genealogies of a countably infinite population
for which the marginal distribution of the genealogy of any n individuals gives the n-coalescent.
K ingman called this the coalescent.

2



Latent Feature Models



Indian Buffet Processes:
Distributions on Sparse Binary Matrices

• Rows are data points

• Columns are latent features

• There are infinitely many latent features

• Each data point can have multiple features

Another way of thinking about this:

• there are multiple overlapping clusters

• each data point can belong to several clusters simultaneously.

If there are K features, then there are 2K possible binary latent representations for
each data point.

(Griffiths and Ghahramani, 2005)



From finite to infinite binary matrices

zik = 1 means object i has feature k:

zik ∼ Bernoulli(θk)

θk ∼ Beta(α/K, 1)

• Note that P (zik = 1|α) = E(θk) = α/K
α/K+1, so

as K grows larger the matrix gets sparser.

• So if Z is N × K, the expected number of
nonzero entries is Nα/(1 + α/K) < Nα.

• Even in the K → ∞ limit, the matrix is
expected to have a finite number of non-zero
entries.



From finite to infinite binary matrices

We can integrate out vector of Beta variables θ, leaving:

P (Z|α) =
∫

P (Z|θ)P (θ|α)dθ

=
∏
k

Γ(mk + α
K)Γ(N −mk + 1)

Γ( α
K)

Γ(1 + α
K)

Γ(N + 1 + α
K)

The conditional feature assignments are:

P (zik = 1|z−i,k) =
∫ 1

0

P (zik|θk)p(θk|z−i,k) dθk =
m−i,k + α

K

N + α
K

,

where z−i,k is the set of assignments of all objects, not including i, for feature k,
and m−i,k is the number of objects having feature k, not including i.
We can take limit as K →∞.

“Rich get richer”, like in Chinese Restaurant Processes.
Infinite vector of Beta random variables θ related to Beta process.



Indian buffet process
(Griffiths and Ghahramani, 2005)
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“Many Indian restaurants
in London offer lunchtime
buffets with an apparently
infinite number of dishes”

• First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(α) number of dishes.

• The nth customer moves along the buffet, sampling dishes in proportion to
their popularity, serving himself dish k with probability mk/n, and trying a
Poisson(α/n) number of new dishes.

• The customer-dish matrix is the feature matrix, Z.



Properties of the Indian buffet process
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Figure 1: Stick-breaking construction for the DP and IBP.

The black stick at top has length 1. At each iteration the

vertical black line represents the break point. The brown

dotted stick on the right is the weight obtained for the DP,

while the blue stick on the left is the weight obtained for

the IBP.

where d  [0, 1) and  > − d. The Pitman-Yor IBP

weights decrease in expectation as a O (k − 1
d ) power-law,

and this may be a better fit for some naturally occurring

data which have a larger number of features with signifi-

cant but small weights [4].

An example technique for the DP which we could adapt to

the IBP is to truncate the stick-breaking construction after a

certain number of break points and to perform inference in

the reduced space. [7] gave a bound for the error introduced

by the truncation in the DP case which can be used here as

well. Let K  be the truncation level. We set µ ( k ) = 0 for
each k > K  , while the joint density of µ ( 1: K  ) is,

p(µ ( 1: K  ) ) =
K   

k = 1

p(µ ( k ) |µ ( k − 1 ) ) (19)

=  K  
µ  

( K  )

K   

k = 1

µ − 1
( k ) I(0 ≤ µ ( K  ) ≤ · · · ≤ µ ( 1 ) ≤ 1)

The conditional distribution of Z given µ ( 1: K  ) is simply
1

p( Z |µ ( 1: K  ) ) =
N 

i = 1

K   

k = 1

µ z i k
( k ) (1 − µ ( k ) )1 − z i k (20)

with z i k = 0 for k > K  . Gibbs sampling in this represen-

tation is straightforward, the only point to note being that

adaptive rejection sampling (ARS) [3] should be used to

sample each µ ( k ) given other variables (see next section).

4 SLICE SAMPLER

Gibbs sampling in the truncated stick-breaking construc-

tion is simple to implement, however the predetermined

truncation level seems to be an arbitrary and unneces-

sary approximation. In this section, we propose a non-

approximate scheme based on slice sampling, which can be

1Note that we are making a slight abuse of notation by using
Z both to denote the original IBP matrix with arbitrarily ordered
columns, and the equivalent matrix with the columns reordered to
decreasing µ’s. Similarly for the feature parameters  ’s.

seen as adaptively choosing the truncation level at each it-

eration. Slice sampling is an auxiliary variable method that

samples from a distribution by sampling uniformly from

the region under its density function [12]. This turns the

problem of sampling from an arbitrary distribution to sam-

pling from uniform distributions. Slice sampling has been

successfully applied to DP mixture models [8], and our ap-

plication to the IBP follows a similar thread.

In detail, we introduce an auxiliary slice variable,

s| Z , µ ( 1: ∞ )  U niform[0, µ  ] (21)

where µ  is a function of µ ( 1: ∞ ) and Z , and is chosen to be
the length of the stick for the last active feature,

µ  = min
 

1, min
k :  i , z i k = 1

µ ( k )

 
. (22)

The joint distribution of Z and the auxiliary variable s is

p(s, µ ( 1: ∞ ) , Z ) = p( Z , µ ( 1: ∞ ) ) p(s| Z , µ ( 1: ∞ ) ) (23)

where p(s| Z , µ ( 1: ∞ ) ) = 1
µ  I(0 ≤ s ≤ µ  ). Clearly, integrat-

ing out s preserves the original distribution over µ ( 1: ∞ ) and

Z , while conditioned on Z and µ ( 1: ∞ ) , s is simply drawn
from (21). Given s, the distribution of Z becomes:

p( Z |x , s, µ ( 1: ∞ ) )  p( Z |x , µ ( 1: ∞ ) ) 1
µ  I(0 ≤ s ≤ µ  ) (24)

which forces all columns k of Z for which µ ( k ) < s to be
zero. Let K  be the maximal feature index with µ ( K  ) > s.
Thus z i k = 0 for all k > K  , and we need only consider

updating those features k ≤ K  . Notice that K  serves

as a truncation level insofar as it limits the computational

costs to a finite amount without approximation.

Let K † be an index such that all active features have in-

dex k < K † (note that K † itself would be an inactive fea-

ture). The computational representation for the slice sam-

pler consists of the slice variables and the first K † features:

 s, K  , K † , Z 1: N , 1: K † , µ ( 1: K † ) ,  1: K †  . The slice sampler
proceeds by updating all variables in turn.

Update s. The slice variable is drawn from (21). If the new
value of s makes K  ≥ K † (equivalently, s < µ ( K † )), then

we need to pad our representation with inactive features

until K  < K †. In the appendix we show that the stick

lengths µ ( k ) for new features k can be drawn iteratively
from the following distribution:

p(µ ( k ) |µ ( k − 1 ) , z : , > k = 0)  exp(  
 N

i = 1
1
i (1 − µ ( k ) ) i )

µ  − 1
( k ) (1 − µ ( k ) ) N I(0 ≤ µ ( k ) ≤ µ ( k − 1 ) ) (25)

We used ARS to draw samples from (25) since it is log-

concave in log µ ( k ) . The columns for these new features

are initialized to z : , k = 0 and their parameters drawn from
their prior  k  H .

Shown in (Griffiths and Ghahramani, 2005):

• It is infinitely exchangeable.

• The number of ones in each row is Poisson(α)

• The expected total number of ones is αN .

• The number of nonzero columns grows as O(α log N).

Additional properties:

• Has a stick-breaking representation (Teh, Görür, Ghahramani, 2007)

• Has as its de Finetti mixing distribution the Beta process (Thibaux and Jordan, 2007)



Completely Random Measures

(Kingman, 1967)

measurable space: Θ with σ-algebra Ω
measure: function µ : Ω→ [0,∞] assigning to each measurable set a non-neg. real
random measure: measures are drawn from some distribution on measures: µ ∼ P
completely random measure (CRM): the values that µ takes on disjoint subsets
are independent: µ(A)⊥⊥µ(B) if A ∩B = ∅

CRMs can be represented as sum of nonrandom measure, atomic measure with fixed
atoms but random masses, and atomic measure with random atoms and masses.

µ = µ0 +
N or∞∑

i=1

u′iδφ′i
+

M or∞∑
i=1

uiδφi

We can write µ ∼ CRM(µ0,Λ, {φ′i, Fi})
where u′i ∼ Fi and {ui, φi} are drawn from a Poisson process on (0,∞] × Θ with
rate measure Λ called the Lévy measure.

Examples:

Gamma process, Beta process (Hjort, 1990), Stable-beta process (Teh and Görür, this NIPS, 2009).



Beta Processes
(Hjort, 1990)

CRMs can be represented as sum of nonrandom measure, atomic measure with fixed
atoms but random masses, and atomic measure with random atoms and masses.

µ = µ0 +
N or∞∑

i=1

u′iδφ′i
+

M or∞∑
i=1

uiδφi

For a beta process we have µ ∼ CRM(0,Λ, {}) where {ui, φi} are drawn from a
Poisson process on (0,∞]×Θ with rate Lévy measure:

Λ(du× dθ) = α c u−1(1− u)c−1du H(dθ)
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A Few Topics I Didn’t Cover

Models for time series

• infinite Hidden Markov Model / HDP-HMM (Beal, Ghahramani, Rasmussen, 2002; Teh,

Jordan, Beal, Blei, 2006; Fox, Sudderth, Jordan, Willsky, 2008)

• infinite factorial HMM / Markov IBP (van Gael, Teh, Ghahramani, 2009)

• beta process HMM (Fox, Sudderth, Jordan, Willsky, 2009)

Hierarchical models for sharing structure

• hierarchical Dirichlet processes (Teh, Jordan, Beal, Blei, 2006)

• hierarchical beta processes (Thibaux, Jordan, 2007)

Many generalisations.

Inference!!



Some Relationships

finite 
mixture

DPM

IBP

factorial 
model

factorial 
HMM

iHMM

ifHMM

HMM

factorial

time

non-param.

1995 1997

2005

2002

2009

HDP-HMM 2006

Thanks for your patience!


