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Clustering

Basic idea: each data point belongs to a cluster

Goals:

• to model the distribution of data;
• to partition data into groups;
• to infer the number of groups

A Classical Approach: mixture modelling with finitely many components

A Bayesian Nonparametric Approach: Dirichlet process mixtures, with countably
infinitely many components



A binary matrix representation for clustering

• Rows are data points
• Columns are clusters
• Since each data point is assigned to one and only one cluster, rows sum to one.
• Finite mixture models: number of columns is finite
• Dirichlet Process Mixtures (DPM): number of columns is countably infinite

The Chinese restaurant process (CRP; Aldous, 1985) is the distribution on partitions
of the data induced by a DPM.

Thus, we can think of the CRP as a distribution on such binary matrices.



More general distributions on binary matrices

• Rows are data points

• Columns are latent features

• We can think of infinite binary matrices...
...where each data point can now have multiple features, so...
...the rows can sum to more than one.



More general distributions on binary matrices

Another way of thinking about this:

• there are multiple overlapping clusters

• each data point can belong to several clusters simultaneously.

If there are K latent features, then there are 2K possible settings of the binary
latent features for each data point.



Why?

• Many statistical models can be thought of as modelling data in terms of hidden
or latent variables.

• Clustering algorithms (e.g. using mixture models) represent data in terms of
which cluster each data point belongs to.

• But clustering models are restrictive...

• Consider modelling people’s movie preferences (the “Netflix” problem). A movie
might be described using features such as “is science fiction”, “has Charlton
Heston”, “was made in the US”, “was made in 1970s”, “has apes in it”... these
features may be unobserved (latent).

• The number of potential latent features for describing a movie (or person, news
story, image, gene, speech waveform, etc) is unlimited.

Other reasons: graph structures, stick breaking, Beta processes, time series!



From finite to infinite binary matrices

znk = 1 means object n has feature k:

znk ∼ Bernoulli(θk)

θk ∼ Beta(α/K, 1)

• Note that P (znk = 1|α) = E(θk) = α/K
α/K+1, so

as K grows larger the matrix gets sparser.

• So if Z is N × K, the expected number of
nonzero entries is Nα/(1 + α/K) < Nα.

• Even in the K → ∞ limit, the matrix is
expected to have a finite number of non-zero
entries.

(Griffiths and Ghahramani, 2005)



From finite to infinite binary matrices

We can integrate out θ, leaving:

P (Z|α) =
∫

P (Z|θ)P (θ|α)dθ

=
∏
k

Γ(mk + α
K)Γ(N −mk + 1)

Γ( α
K)

Γ(1 + α
K)

Γ(N + 1 + α
K)

The conditional feature assignments are:

P (znk = 1|z−n,k) =
∫ 1

0

P (znk|θk)p(θk|z−n,k) dθk

=
m−n,k + α

K

N + α
K

where z−n,k is the set of assignments of all objects, not including n, for feature k,
and m−n,k is the number of objects having feature k, not including n.
We can take limit as K →∞.

“Rich get richer”, like in Chinese Restaurant Processes.



From finite to infinite binary matrices

A technical difficulty: the probability for any particular matrix goes
to zero as K →∞:

lim
K→∞

P (Z|α) = 0

However, if we consider equivalence classes of matrices in left-ordered form obtained
by reordering the columns: [Z] = lof(Z) we get:

lim
K→∞

P ([Z]|α) = exp
{
− αHN

} αK+∏
h>0 Kh!

∏
k≤K+

(N −mk)!(mk − 1)!
N !

.

• K+ is the number of features assigned (i.e. non-zero columns).

• HN =
∑N

n=1
1
n is the N th harmonic number.

• Kh are the number of features with history h (a technicality).

• This distribution is infinitely exchangeable, i.e. it is not affected by the ordering
on objects. This is important for its use as a prior in settings where the objects
have no natural ordering.



Binary matrices in left-ordered form

lof

(a) (b)

(a) The matrix on the left is transformed into the matrix on the right by the function
lof(). The resulting left-ordered matrix was generated from a Chinese restaurant
process (CRP) with α = 10.

(b) A left-ordered feature matrix. This matrix was generated from the prior on
infinite binary matrices with α = 10.



Indian buffet process
(Griffiths and Ghahramani, 2005)
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“Many Indian restaurants
in London offer lunchtime
buffets with an apparently
infinite number of dishes”

• First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(α) number of dishes as her plate becomes overburdened.

• The nth customer moves along the buffet, sampling dishes in proportion to their
popularity, serving himself with probability mk/n, and trying a Poisson(α/n)
number of new dishes.

• The customer-dish matrix is our feature matrix, Z.



Properties of the Indian buffet process
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Figure 1: Stick-breaking construction for the DP and IBP.

The black stick at top has length 1. At each iteration the

vertical black line represents the break point. The brown

dotted stick on the right is the weight obtained for the DP,

while the blue stick on the left is the weight obtained for

the IBP.

where d  [0, 1) and  > − d. The Pitman-Yor IBP

weights decrease in expectation as a O (k − 1
d ) power-law,

and this may be a better fit for some naturally occurring

data which have a larger number of features with signifi-

cant but small weights [4].

An example technique for the DP which we could adapt to

the IBP is to truncate the stick-breaking construction after a

certain number of break points and to perform inference in

the reduced space. [7] gave a bound for the error introduced

by the truncation in the DP case which can be used here as

well. Let K  be the truncation level. We set µ ( k ) = 0 for
each k > K  , while the joint density of µ ( 1: K  ) is,

p(µ ( 1: K  ) ) =
K   

k = 1

p(µ ( k ) |µ ( k − 1 ) ) (19)

=  K  
µ  

( K  )

K   

k = 1

µ − 1
( k ) I(0 ≤ µ ( K  ) ≤ · · · ≤ µ ( 1 ) ≤ 1)

The conditional distribution of Z given µ ( 1: K  ) is simply
1

p( Z |µ ( 1: K  ) ) =
N 

i = 1

K   

k = 1

µ z i k
( k ) (1 − µ ( k ) )1 − z i k (20)

with z i k = 0 for k > K  . Gibbs sampling in this represen-

tation is straightforward, the only point to note being that

adaptive rejection sampling (ARS) [3] should be used to

sample each µ ( k ) given other variables (see next section).

4 SLICE SAMPLER

Gibbs sampling in the truncated stick-breaking construc-

tion is simple to implement, however the predetermined

truncation level seems to be an arbitrary and unneces-

sary approximation. In this section, we propose a non-

approximate scheme based on slice sampling, which can be

1Note that we are making a slight abuse of notation by using
Z both to denote the original IBP matrix with arbitrarily ordered
columns, and the equivalent matrix with the columns reordered to
decreasing µ’s. Similarly for the feature parameters  ’s.

seen as adaptively choosing the truncation level at each it-

eration. Slice sampling is an auxiliary variable method that

samples from a distribution by sampling uniformly from

the region under its density function [12]. This turns the

problem of sampling from an arbitrary distribution to sam-

pling from uniform distributions. Slice sampling has been

successfully applied to DP mixture models [8], and our ap-

plication to the IBP follows a similar thread.

In detail, we introduce an auxiliary slice variable,

s| Z , µ ( 1: ∞ )  U niform[0, µ  ] (21)

where µ  is a function of µ ( 1: ∞ ) and Z , and is chosen to be
the length of the stick for the last active feature,

µ  = min
 

1, min
k :  i , z i k = 1

µ ( k )

 
. (22)

The joint distribution of Z and the auxiliary variable s is

p(s, µ ( 1: ∞ ) , Z ) = p( Z , µ ( 1: ∞ ) ) p(s| Z , µ ( 1: ∞ ) ) (23)

where p(s| Z , µ ( 1: ∞ ) ) = 1
µ  I(0 ≤ s ≤ µ  ). Clearly, integrat-

ing out s preserves the original distribution over µ ( 1: ∞ ) and

Z , while conditioned on Z and µ ( 1: ∞ ) , s is simply drawn
from (21). Given s, the distribution of Z becomes:

p( Z |x , s, µ ( 1: ∞ ) )  p( Z |x , µ ( 1: ∞ ) ) 1
µ  I(0 ≤ s ≤ µ  ) (24)

which forces all columns k of Z for which µ ( k ) < s to be
zero. Let K  be the maximal feature index with µ ( K  ) > s.
Thus z i k = 0 for all k > K  , and we need only consider

updating those features k ≤ K  . Notice that K  serves

as a truncation level insofar as it limits the computational

costs to a finite amount without approximation.

Let K † be an index such that all active features have in-

dex k < K † (note that K † itself would be an inactive fea-

ture). The computational representation for the slice sam-

pler consists of the slice variables and the first K † features:

 s, K  , K † , Z 1: N , 1: K † , µ ( 1: K † ) ,  1: K †  . The slice sampler
proceeds by updating all variables in turn.

Update s. The slice variable is drawn from (21). If the new
value of s makes K  ≥ K † (equivalently, s < µ ( K † )), then

we need to pad our representation with inactive features

until K  < K †. In the appendix we show that the stick

lengths µ ( k ) for new features k can be drawn iteratively
from the following distribution:

p(µ ( k ) |µ ( k − 1 ) , z : , > k = 0)  exp(  
 N

i = 1
1
i (1 − µ ( k ) ) i )

µ  − 1
( k ) (1 − µ ( k ) ) N I(0 ≤ µ ( k ) ≤ µ ( k − 1 ) ) (25)

We used ARS to draw samples from (25) since it is log-

concave in log µ ( k ) . The columns for these new features

are initialized to z : , k = 0 and their parameters drawn from
their prior  k  H .

Shown in (Griffiths and Ghahramani, 2005):

• It is infinitely exchangeable.

• The number of ones in each row is Poisson(α)

• The expected total number of ones is αN .

• The number of nonzero columns grows as O(α log N).

Additional properties:

• Has a stick-breaking representation (Teh, Görür, Ghahramani, 2007)

• Can be interpreted using a Beta-Bernoulli process (Thibaux and Jordan, 2007)



What do we do with Z ?

Model data.



Modelling Data

Latent variable model: let X be the N ×D matrix of observed data, and Z be the
N ×K matrix of binary latent features

P (X,Z|α) = P (X|Z)P (Z|α)

By combining the IBP with different likelihood functions we can get different kinds
of models:

• Models for graph structures (w/ Wood, Griffiths, 2006)

• Models for protein complexes (w/ Chu, Wild, 2006)

• Models for overlapping clusters (w/ Heller, 2007)

• Models for choice behaviour (Görür, Jäkel & Rasmussen, 2006)

• Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2006)

• Sparse latent factor models (w/ Knowles, 2007)



Posterior Inference in IBPs
P (Z, α|X) ∝ P (X|Z)P (Z|α)P (α)

Gibbs sampling: P (znk = 1|Z−(nk),X, α) ∝ P (znk = 1|Z−(nk), α)P (X|Z)

• If m−n,k > 0, P (znk = 1|z−n,k) =
m−n,k

N
• For infinitely many k such that m−n,k = 0: Metropolis steps with truncation∗ to

sample from the number of new features for each object.
• If α has a Gamma prior then the posterior is also Gamma → Gibbs sample.

Conjugate sampler: assumes that P (X|Z) can be computed.

Non-conjugate sampler: P (X|Z) =
∫

P (X|Z, θ)P (θ)dθ cannot be computed,
requires sampling latent θ as well (c.f. (Neal 2000) non-conjugate DPM samplers).

∗Slice sampler: non-conjugate case, is not approximate, and has an adaptive
truncation level using a stick-breaking construction of the IBP (Teh, et al, 2007).

Particle Filter: (Wood & Griffiths, 2007).

Accelerated Gibbs Sampling: maintaining a probability distribution over some of
the variables (Doshi-Velez & Ghahramani, 2009).

Variational inference: (Doshi-Velez, Miller, van Gael, & Teh, 2009).



An application of IBPs

“A Non-Parametric Bayesian Method for Inferring Hidden Causes”
(Wood, Griffiths, Ghahramani, 2006)

Inferring stroke localization from patient symptoms:

(50 stroke patients, 56 symptoms/signs)

The IBP models the graph structure connecting hidden causes to symptoms



Infinite Sparse Latent Factor Models

Model: Y = G(Z⊗X) + E

x ⊗ z

G

y

...

where Y is the data matrix, G is the factor loading matrix, Z ∼ IBP(α, β) is a
mask matrix, X is heavy tailed factors and E is Gaussian noise.

The IBP models the sparsity structure in the latent variables
(w/ Knowles, 2007)



Modelling Dyadic Data
genes × patients

users × movies

The IBP models latent features of genes, patients, users, movies.
(w/ Meeds, Roweis, Neal, 2006)



Three generalizations

• a two-parameter generalization of the Indian buffet process

• from binary to non-binary latent features

• time series models



I. A two-parameter generalization of the IBP?
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Limitation:

• The hyperparameter α controls the number of features per object Kn
def
=

P
k znk ∼

Poisson(α)

• But α also controls the total number of features possessed by a set of N objects, i.e. the

variability across rows of Z.

• This seems limited—we really want independent control over the mean number of features and

the variability across rows.



I. A two-parameter generalization of the IBP

znk = 1 means object n has feature k

One-parameter IBP

znk ∼ Bernoulli(θk)

θk ∼ Beta(α/K, 1)

Two-parameter IBP

znk ∼ Bernoulli(θk)

θk ∼ Beta(αβ/K, β)

Properties of the two-parameter IBP

• Number of features per object is Poisson(α)

• Setting β = 1 reduces to IBP.

• Parameter β is feature repulsion, 1/β is feature stickiness.

• Total expected number of features is K̄+ = α
NX

n=1

β

β + n− 1
−→ αβ log N

• lim
β→0

K̄+ = α

• lim
β→∞

K̄+ = Nα

Joint work with Peter Sollich



I. A two-parameter generalization of the IBP
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• First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(α) number of dishes as her plate becomes overburdened.

• The nth customer moves along the buffet, sampling dishes in proportion to
their popularity, serving himself with probability mk/(β − 1 + n), and trying a
Poisson(αβ/(β − 1 + n)) number of new dishes.



II. From binary to non-binary latent features

In many models we might want non-binary latent features.

A simple way to generate non-binary latent feature matrices from Z:

F = Z⊗V

where ⊗ is the elementwise (Hadamard) product of two matrices, and V is a matrix
of independent random variables (e.g. Gaussian, Poisson, Discrete, ...).
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III. Markov Indian buffet process and time series

Let the Znk have a Markov structure: e.g.

P (Znk = 1|Zn−1,k = 0) = θk,0,1

Why? For time series data, we want latent factors to turn on and off in a manner
that depends on time.

The Markov IBP (MIBP) defines such a process, which has IBP marginals.
(van Gael, Teh, Ghahramani, 2009)

More generally we can have the IBP be dependent on covariates (Williamson).

The MIBP can be used to generalise the hidden Markov model...



III. Markov Indian buffet process and time series

F igure 1: The H idden Markov Model F igure 2: The Factorial H idden Markov Model

in a factored form. This way, information from the past is propagated in a distributed manner through
a set of parallel Markov chains. The parallel chains can be viewed as latent features which evolve
over time according to Markov dynamics. Formally, the F H M M defines a probability distribution
over observations y1 , y2 , · · · y T as follows: M latent chains s( 1 ) , s( 2 ) , · · · , s( M ) evolve according
to Markov dynamics and at each timestep t, the Markov chains generate an output y t using some
likelihood model F parameterized by a joint state-dependent parameter  s ( 1 : m )

t
. The graphical model

in figure 2 shows how the F H M M is a special case of a dynamic Bayesian network. The F H M M has
been successfully applied in vision [3], audio processing [4] and natural language processing [5].
Unfortunately, the dimensionality M of our factorial representation or equivalently, the number of
parallel Markov chains, is a new free parameter for the F H M M which we would prefer learning
from data rather than specifying it beforehand.

Recently, [6] introduced the basic building block for nonparametric Bayesian factor models called
the Indian Buffet Process (IBP). The IBP defines a distribution over infinite binary matrices Z where
element z n k denotes whether datapoint n has feature k or not. The IBP can be combined with
distributions over real numbers or integers to make the features useful for practical problems.

In this work, we derive the basic building block for nonparametric Bayesian factor models for time
series which we call the Markov Indian Buffet Process (mIBP). Using this distribution we build a
nonparametric extension of the F H M M which we call the Infinite Factorial H idden Markov Model
(i F H M M). This construction allows us to learn a factorial representation for time series.

In the next section, we develop the novel and generic nonparametric mIBP distribution. Section 3
describes how to use the mIBP do build the i F H M M. Which in turn can be used to perform inde-
pendent component analysis on time series data. Section 4 shows results of our application of the
i F H M M to a blind source separation problem. F inally, we conclude with a discussion in section 5.

2 The Markov Indian Buffet Process

Similar to the IBP, we define a distribution over binary matrices to model whether a feature at time
t is on or off. In this representation rows correspond to timesteps and the columns to features or
Markov chains. We want the distribution over matrices to satisfy the following two properties: (1)
the potential number of columns (representing latent features) should be able to be arbitrary large;
(2) the rows (representing timesteps) should evolve according to a Markov process.

Below, we will formally derive the mIBP distribution in two steps: first, we describe a distribution
over binary matrices with a finite number of columns. We choose the hyperparameters carefully so
we can easily integrate out the parameters of the model. In a second phase, we take the limit as the
number of features goes to infinity in a manner analogous to [7]’s derivation of infinite mixtures.

2.1 A finite model

Let S represent a binary matrix with T rows (datapoints) and M columns (features). s t m represents
the hidden state at time t for Markov chain m. Each Markov chain evolves according to the transition
matrix

W ( m ) =
 

1 − a m a m
1 − b m b m

 
, (3)

2

F igure 3: The Infinite Factorial H idden Markov Model

3 The Infinite Factorial Hidden Markov Model

In this section, we explain how to use the mIBP as a building block in a full blown probabilistic
model. The mIBP provides us with a matrix S which we interpret as an arbitrarily large set of par-
allel Markov chains. F irst we augment our binary representation with a more expressive component
which can describe feature specific properties. We do this by introducing a base distribution H from
which we sample a parameter  m  H for each Markov chain. This is a rather flexible setup as
the base distribution can introduce a parameter for every chain and every timestep, which we will
illustrate in section 3.1.

Now that we have a model with a more expressive latent structure, we want to add a likelihood
model F which describes the distribution over the observations conditional on the latent structure.
Formally, F (y t |  , s t ;Ð ) describes the probability of generating y t given the model parameters  
and the current latent feature state s t ;Ð. We note that there are two important conditions which
the likelihood must satisfy in order for the limit M  ∞ to be valid: (1) the likelihood must be
invariant to permutations of the features, (2) the likelihood cannot depend on  m if s t m = 0. F igure 3
shows the graphical model for our construction which we call the Infinite Factorial H idden Markov
Model (i F H M M). In the following section, we describe one particular choice of base distribution
and likelihood model which performs Independent Component A nalysis on time series.

3.1 The Independent Component Analysis iFH M M

Independent Component A nalysis [9] (IC A ) means different things to different people. Originally
invented as an algorithm to unmix a signal into a set of independent signals, it will be more insightful
for our purpose to think of IC A in terms of the probabilistic model which we describe below. A s we
explain in detail in section 4, we are interested in IC A to solve the blind source separation problem.

A ssume that M signals are represented through the vectors x m ; grouping them we can represent
the signals using the matrix X = [x 1 x 2 · · · x M ]. Next, we linearly combine the signals using a
mixing matrix W to generate the observed signal Y = X W . A dditionally, we will assume IID
Normal(0,  2

Y ) noise added: Y = X W +  .

A variety of fast algorithms exist which unmix the observations Y and recover the signal X . How-
ever, crucial to these algorithms is that the number of signals is known in advance. [10] used the
IBP to design the Infinite Independent Component A nalysis (iIC A ) model which learns an appropri-
ate number of signals from exchangeable data. Our IC A i F H M M model extends the iIC A for time
series.

The IC A i F H M M generative model can be described as follows: we sample S  mIB P and point-
wise multiply (denoted by  ) it with a signal matrix X . Each entry in X is an IID sample from a
Laplace(0, 1) distribution. One could choose many other distributions for X , but since in section 4
we will model speech data, which is known to be heavy tailed, the Laplace distribution is a conve-
nient choice. Speakers will be speaking infrequently so pointwise multiplying a heavy tailed distri-
bution with a sparse binary matrix achieves our goal of producing a sparse heavy tailed distribution.
Next, we introduce a mixing matrix W which has a row for each signal in S  X and a column
for each observed dimension in Y . The entries for W are sampled IID from a Normal(0,  2

W )
distribution. F inally, we combine the signal and mixing matrices as in the finite case to form the

5

...



The Big Picture
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Summary

• A distribution on infinite sparse binary matrices that can be used to define many
new non-parametric Bayesian models.

http://learning.eng.cam.ac.uk/zoubin
zoubin@eng.cam.ac.uk


