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Probabilistic modelling

Data D, model M; what do we know about x?

Bayesian prediction with unknown parameters θ:

P (x|D,M) =
∫

P (x, θ|D,M) dθ Marginalization

=
∫

P (x|θ,D,M)P (θ|D,M)︸ ︷︷ ︸
from Bayes’ rule

dθ Product rule

=
∫ ∑

h

P (x, h|θ,D,M)
∑
H

P (θ, H|D,M) dθ

· · ·

Inference is the mechanical use of probability theory. . .
. . . provided we can do all the sums and integrals



Example: regression
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Non-linear regression

Many parameters:

θ = {curve, noise}

P (y|x,D,M) =∫
P (y|x, θ,M)P (θ|D,M) dθ

Looks tractable? Things are made complicated by

hyper-parameters & complex noise models (logistic → classification)



Example: binary latents

100 binary variables xi ∈ {0, 1}, could be:

– a tiny patch of pixel labels in computer vision

– assignments to outlier/ordinary of 100 data points

– or a tiny patch of idealized magnetic iron

There are 2100 possible states

The age of the universe ≈ 298 picoseconds

Sum might decompose (e.g. belief propagation)

. . . otherwise must approximate

Even if your 10×10 patch is tractable 100×100 is probably not



Example: topic modelling

Adapted from Steyvers and Griffiths (2006)



Simple Monte Carlo

Integration

I =
∫

f(x)P (x) dx ≈ 1
S

S∑
s=1

f(x(s)), x(s) ∼ P (x)

Making predictions

p(x|D) =
∫

P (x|θ,D)P (θ|D) dθ

≈ 1
S

S∑
s=1

P (x|θ(s),D), θ(s) ∼ P (θ|D)

Unbiased, variance ∼ 1/S



When to sample?
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EP versus Monte Carlo

• Monte Carlo is general but expensive

– A sledgehammer

• EP exploits underlying simplicity of the 
problem (if it exists)

• Monte Carlo is still needed for complex 
problems (e.g. large isolated peaks)

• Trick is to know what problem you have

Stolen from Tom Minka’s slides from last week



How to sample?

For univariate distributions
(and some other special cases)

Available free online

http://cg.scs.carleton.ca/~luc/rnbookindex.html



Markov chain Monte Carlo

Construction a random walk that explores P (x)

Markov steps xt ∼ T (xt←xt−1)

MCMC gives approximate, correlated samples from P (x)



Transition operators

Discrete example

P =

3/5
1/5
1/5

 T =

2/3 1/2 1/2
1/6 0 1/2
1/6 1/2 0

 Tij = T (xi←xj)

To machine precision: T 100
0@1

0
0

1A =
0@3/5

1/5
1/5

1A = P

P is a stationary distribution of T because TP =P , i.e.∑
x

T (x′←x)P (x) = P (x′)

Also need to explore entire space: TK(x′←x)>0 for all P (x′) > 0



Detailed balance

Detailed balance means →x→x′ and →x′→x are equally probable:

T (x′←x)P (x) = T (x←x′)P (x′)

Summing both sides over x:∑
x

T (x′←x)P (x) = P (x′)

����
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������*1∑
x

T (x←x′)

detailed balance implies a stationary condition

Enforcing detailed balance is easy: it only involves isolated pairs



Metropolis–Hastings

Transition operator

• Propose a move from the current state Q(x′;x), e.g. N (x, σ2)

• Accept with probability min
(
1, P (x′)Q(x;x′)

P (x)Q(x′;x)

)
• Otherwise next state in chain is a copy of current state

Notes

• Can use P ∗ ∝ P (x); normalizer cancels in acceptance ratio

• Satisfies detailed balance (shown below)

• Q must be chosen to fulfill the other technical requirements

P (x) · T (x
′←x) = P (x) ·Q(x

′
; x) min

 
1,

P (x′)Q(x; x′)
P (x)Q(x′; x)

!
= min

“
P (x)Q(x

′
; x), P (x

′
)Q(x; x

′
)
”

= P (x
′
)·Q(x; x

′
) min

 
1,

P (x)Q(x′; x)

P (x′)Q(x; x′)

!
= P (x

′
)·T (x←x

′
)



Metropolis–Hastings

Q

P

L

Generic proposals use

Q(x′;x) = N (x, σ2)

σ large → many rejections

σ small → slow diffusion:
∼(L/σ)2 iterations required

Adapted from MacKay (2003)



Gibbs sampling

A method with no rejections:

– Initialize x to some value

– For each variable in turn successively

resample P (xi|xj 6=i)

Proof of validity:
Metropolis–Hastings ‘proposals’ P (xi|xj 6=i)⇒ accept with prob. 1
Apply a series of these operators; don’t need to check acceptance



Routine Gibbs sampling

Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

• Conditionals with a few discrete settings can be explicitly normalized:

P (xi|xj 6=i) ∝ P (xi,xj 6=i)

=
P (xi,xj 6=i)∑
x′i

P (x′i,xj 6=i) ← this sum is small and easy

• Continuous conditionals only univariate

⇒ amenable to standard sampling methods.

WinBUGS and OpenBUGS sample graphical models using these tricks



<messages>

MCMC
– tackles high-dimensional integrals
– good proposals may require ingenuity
– sometimes simple and routine
– but can be very slow

</messages>



Finding P (xi=1)

Method 1: fraction of time xi=1

P (xi=1) =
∑
xi

I(xi=1)P (xi) ≈
1
S

S∑
s=1

I(x(s)
i ), x

(s)
i ∼ P (xi)

Method 2: average of P (xi=1|x\i)

P (xi=1) =
∑
x\i

P (xi=1|x\i)P (x\i)

≈ 1
S

S∑
s=1

P (xi = 1|x(s)
\i ), x(s)

\i ∼ P (x\i)



Processing samples

This is easy

I =
∑
x

f(xi)P (x) ≈ 1
S

S∑
s=1

f(x(s)
i ), x(s) ∼ P (x)

But we can do better

I =
∑
x

f(xi)P (xi|x\i)P (x\i) =
∑
x\i

( ∑
xi

f(xi)P (xi|x\i)
)

P (x\i)

≈ 1
S

S∑
s=1

( ∑
xi

f(xi)P (xi|x(s)
\i )

)
, x(s)

\i ∼ P (x\i)

A “Rao-Blackwellization”. See also “waste recycling”



<messages>

Using samples effectively
– Monte Carlo is inherently noisy
– conditioned on some samples many

integrals become tractable
– There is a choice of estimators. . .

. . . did we remember to consider it?

</messages>



Auxiliary variables

The point of MCMC is to marginalize out variables,
but one can introduce more variables:∫

f(x)P (x) dx =
∫

f(x)P (x, v) dxdv

≈ 1
S

S∑
s=1

f(x(s)), x, v ∼ P (x, v)

We might want to do this if

• P (x|v) and P (v|x) are simple

• P (x, v) is otherwise easier to navigate



Slice sampling idea

Sample point uniformly under curve P ∗(x) ∝ P (x)

x

h

(x, h)

P
∗(x)

Height h is an auxiliary variable:

p(h|x) = Uniform[0, P ∗(x)]

p(x|h) ∝

{
1 P ∗(x) ≥ h

0 otherwise
= “Uniform on the slice”



Slice sampling

Unimodal conditionals

x

h

(x, h)

x

h

(x, h)

x

h

(x, h)

• bracket slice

• sample uniformly within bracket

• shrink bracket if P ∗(x) < h (off slice)

• accept first point on the slice



Slice sampling

Multimodal conditionals

x

h

(x, h)

P
∗(x)

• place bracket randomly around point

• linearly step out until bracket ends are off slice

• sample on bracket shrinking as before

Satisfies detailed balance, leaves p(x|h) invariant



Slice sampling

The many nice features of slice-sampling:

• Easy — only require P ∗(x) ∝ P (x) pointwise

• No rejections

• Step-size parameters less important than Metropolis

• Linear bracketing one of several operators on slice

• Also provides frameworks for:

– adaptation

– random walk reduction



Hamiltonian dynamics

Construct a landscape with gravitational potential energy, E(x):

P (x) ∝ e−E(x), E(x) = − log P ∗(x)

Introduce velocity v carrying kinetic energy K(v) = v>v/2

Some physics:

• Total energy or Hamiltonian, H = E(x) + K(v)

• Frictionless ball rolling (x, v)→(x′, v′) satisfies H(x′, v′) = H(x, v)

• Ideal Hamiltonian dynamics are time reversible:

– reverse v and the ball will return to its start point



Hamiltonian Monte Carlo
Define a joint distribution:

• P (x, v) ∝ e−E(x)e−K(v) = e−E(x)−K(v) = e−H(x,v)

• Velocity independent of position and Gaussian distributed

Markov chain operators

• Gibbs sample velocity

• Simulate Hamiltonian dynamics then flip sign of velocity

– Hamiltonian ‘proposal’ is deterministic and reversible

q(x′, v′;x, v) = q(x, v;x′, v′) = 1
– Conservation of energy means P (x, v) = P (x′, v′)
– Metropolis acceptance probability is 1

Except we can’t simulate Hamiltonian dynamics exactly



Leap-frog dynamics

a discrete approximation to Hamiltonian dynamics:

vi(t + ε
2) = vi(t)−

ε

2
∂E(x(t))

∂xi

xi(t + ε) = xi(t) + εvi(t + ε
2)

pi(t + ε) = vi(t + ε
2)−

ε

2
∂E(x(t + ε))

∂xi

• H is not conserved

• dynamics are still deterministic and reversible

• Acceptance probability becomes min[1, exp(H(v, x)−H(v′, x′))]



Hamiltonian Monte Carlo

The algorithm:

• Gibbs sample velocity ∼ N (0, 1)

• Simulate Leapfrog dynamics for L steps

• Accept new position with probability

min[1, exp(H(v, x)−H(v′, x′))]

The original name is Hybrid Monte Carlo, a hybrid of traditional

dynamical simulation and the Metropolis algorithm.



<messages>

Auxiliary variables
– potentially a computational burden
– can make using MCMC simpler:

Slice sampling robust to step-sizes
– can help navigation:

HMC uses gradient information

</messages>



Three problems

Mixing:

Efficient burn-in and mode

exploration can be a problem

Rare events:

Need many samples from a distribution

to estimate its tail

Normalizing constants

p(x) =
p∗(x)
Z

, MCMC doesn’t need Z. . . or find it either



Finding normalizers is hard

Prior sampling: like finding fraction of needles in a hay-stack

P (D|M) =
∫

P (D|θ,M)P (θ|M) dθ

=
1
S

S∑
s=1

P (D|θ(s),M), θ(s) ∼ P (θ|M)

. . . can have huge or infinite variance

Posterior sampling: returns values at large points, but not spacing



Using other distributions

Bridge between posterior and prior:

e.g. P (θ;β) =
1
Z(β)

P (D|θ)βP (θ)

β = 0 β = 0.01 β = 0.1 β = 0.25 β = 0.5 β = 1

Advantages:

• mixing easier at low β, good initialization for higher β?

• Z(1)
Z(0)

=
Z(β1)
Z(0)

· Z(β2)
Z(β1)

· Z(β3)
Z(β2)

· Z(β4)
Z(β3)

· Z(1)
Z(β4)

Related to annealing or tempering, 1/β = “temperature”



Parallel tempering

Normal MCMC transitions + swap proposals on P (X) =
∏
β

P (X;β)

P (x)

Pβ1
(x)

Pβ2
(x)

Pβ3
(x)

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

T1

Tβ1

Tβ2

Tβ3

Problems / trade-offs:

• obvious space cost

• need to equilibriate larger system

• information from low β diffuses up by slow random walk



Tempered transitions

Drive temperature up. . .

x̂0 ∼ P (x)

P (X) :

x̂0

x̂1

x̂2

x̂K−1

x̄K

x̌K−1

x̌2

x̌1

x̌0

T̂β1

T̂β2

T̂βK
ŤβK

Ťβ2

Ťβ1

. . . and back down

Proposal: swap order of points so final point x̌0 putatively ∼ P (x)

Acceptance probability:

min

[
1,

Pβ1(x̂0)
P (x̂0)

· · ·
PβK

(x̂K−1)
PβK−1

(x̂0)
PβK−1

(x̌K−1)
PβK

(x̌K−1)
· · · P (x̌0)

Pβ1(x̌0)

]



<messages>

Bridging between distributions
– can help mixing
– can usually use your existing code
– gives extra information, e.g. normalizers

</messages>



Key points

• MCMC — a powerful tool for high dimensional integrals

• Use samples effectively:
remember to consider alternative estimators

• Auxiliary variables — Slice sampling and HMC:

potentially much faster than simple Metropolis

• Consider different distributions:
helps mixing, answers new questions

[The End]



Further reading (1/2)
General references:
Probabilistic inference using Markov chain Monte Carlo methods, Radford M. Neal, Technical report: CRG-TR-93-1,
Department of Computer Science, University of Toronto, 1993. http://www.cs.toronto.edu/~radford/review.abstract.html

Information theory, inference, and learning algorithms. David MacKay, 2003. http://www.inference.phy.cam.ac.uk/mackay/itila/

Specific points:
The topic modelling figure was adapted from:
Probabilistic topic models, Mark Steyvers and Tom Griffiths, Latent Semantic Analysis: A Road to Meaning, T. Landauer, D. McNamara, S. Dennis
and W. Kintsch (editors), Laurence Erlbaum, 2006. http://psiexp.ss.uci.edu/research/papers/SteyversGriffithsLSABookFormatted.pdf

If you do Gibbs sampling with continuous distributions you should know about this method, which I omitted for material-overload reasons:
Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation, Radford M. Neal, Learning in graphical models,
M. I. Jordan (editor), 205–228, Kluwer Academic Publishers, 1998. http://www.cs.toronto.edu/~radford/overk.abstract.html

An example of picking estimators carefully:
Speed-up of Monte Carlo simulations by sampling of rejected states, Frenkel, D, Proceedings of the National Academy of Sciences, 101(51):17571–
17575, The National Academy of Sciences, 2004. http://www.pnas.org/cgi/content/abstract/101/51/17571

A key reference for auxiliary variable methods is:
Generalizations of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm, Robert G. Edwards and A. D. Sokal,
Physical Review, 38:2009–2012, 1988.

Slice sampling, Radford M. Neal, Annals of Statistics, 31(3):705–767, 2003. http://www.cs.toronto.edu/~radford/slice-aos.abstract.html

Bayesian training of backpropagation networks by the hybrid Monte Carlo method, Radford M. Neal,
Technical report: CRG-TR-92-1, Connectionist Research Group, University of Toronto, 1992. http://www.cs.toronto.edu/~radford/bbp.abstract.html

An early reference for parallel tempering:
Markov chain Monte Carlo maximum likelihood, Geyer, C. J, Computing Science and Statistics: Proceedings of the 23rd Symposium on the
Interface, 156–163, 1991.

Sampling from multimodal distributions using tempered transitions, Radford M. Neal, Statistics and Computing, 6(4):353–366, 1996.



Further reading (2/2)
Software:
Gibbs sampling for graphical models: http://mathstat.helsinki.fi/openbugs/

Neural networks and other flexible models: http://www.cs.utoronto.ca/~radford/fbm.software.html

Other Monte Carlo methods:
Nested sampling is a new Monte Carlo method that challenges the traditional approach to Bayesian computation. Highly recommended reading;
I would have needed the entire tutorial to give it justice:
Nested sampling for general Bayesian computation, John Skilling, Bayesian Analysis, 2006.
(to appear, posted online June 5). http://ba.stat.cmu.edu/journal/forthcoming/skilling.pdf

Approaches based on the “multi-canonicle ensemble” also solve some of the problems with traditional bridging methods:
Multicanonical ensemble: a new approach to simulate first-order phase transitions, Bernd A. Berg and Thomas Neuhaus, Phys. Rev. Lett,
68(1):9–12, 1992. http://prola.aps.org/abstract/PRL/v68/i1/p9 1

Extended Ensemble Monte Carlo. Y Iba. Int J Mod Phys C [Computational Physics and Physical Computation] 12(5):623-656. 2001.

Particle filters / Sequential Monte Carlo are famously successful in time series modelling, but are more generally applicable.
This may be a good place to start: http://www.cs.ubc.ca/~arnaud/journals.html

Exact or perfect sampling uses Markov chain simulation but suffers no initialization bias. An amazing feat when it can be performed:
Annotated bibliography of perfectly random sampling with Markov chains, David B. Wilson
http://dbwilson.com/exact/

MCMC does not apply to doubly-intractable distributions. For what that even means and possible solutions see:
An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants, J. Møller, A. N. Pettitt, R. Reeves and
K. K. Berthelsen, Biometrika, 93(2):451–458, 2006.
MCMC for doubly-intractable distributions, Iain Murray, Zoubin Ghahramani and David J. C. MacKay, Proceedings of the 22nd Annual
Conference on Uncertainty in Artificial Intelligence (UAI-06), Rina Dechter and Thomas S. Richardson (editors), 359–366, AUAI Press, 2006.
http://www.gatsby.ucl.ac.uk/~iam23/pub/06doubly intractable/doubly intractable.pdf



Assorted spare slides



Sampling from distributions
Draw points from the unit area under the curve

P (x)

x
x

(2)
x

(3)
x

(1)
x

(4)

Draw probability mass to left of point, u ∼ Uniform[0,1]

Sample x(u) = c−1(u), where c(x) =
∫ x

−∞P (x′) dx′

Problem: often can’t even normalize P , eg P (θ|D) ∝ P (D|θ)P (θ)



Rejection sampling
Sampling underneath a P ∗(x) ∝ P (x) curve is also valid

coptQ
∗(x)

P ∗(x)

cQ∗(x)

xx(1)

(xj , hj)

(xi, hi)

Draw underneath a simple
curve cQ∗(x) ≥ P ∗(x):

– Draw x ∼ Q(x)
– height h ∼ Uniform[0, cQ∗(x)]

Discard points above P ∗,

i.e. if h > P ∗(x)



Importance sampling

Computing P ∗(x) and Q∗(x), then throwing x away seems wasteful

Instead rewrite the integral as an expectation under Q:∫
f(x)P (x) dx =

∫
f(x)

P (x)
Q(x)

Q(x) dx, (Q(x) > 0 if P (x) > 0)

≈ 1
S

S∑
s=1

f(x(s))
P (x(s))
Q(x(s))

, x(s) ∼ Q(x)

Unbiased; but light-tailed Q(x) can give the estimator infinite variance

. . . and you might not notice.

Importance sampling applies when the integral is not an expectation.



Importance sampling (2)

Previous slide assumed we could evaluate P (x) = P ∗(x)/ZP∫
f(x)P (x) dx ≈ ZQ

ZP

1
S

S∑
s=1

f(x(s))
P ∗(x(s))
Q∗(x(s))︸ ︷︷ ︸

w(s)

, x(s) ∼ Q(x)

≈
�
�
�
�
��1

S

S∑
s=1

f(x(s))
w(s)

�
�
��1

S

∑
s′w

(s′)

This estimator is consistent but biased

Note that ZP/ZQ ≈ 1
S

∑
s w(s)



Doubly-intractable problems

MCMC can sample most distributions

• MRFs / Undirected graphical models: p(x|θ) =
1
Z(θ)

e−E(x;θ)

• parameter posteriors: p(θ|x) =
p(x|θ)p(θ)

p(x)

Some distributions are much harder

• MRF parameter posterior: p(θ|x) =
1
Z(θ)e

−E(x;θ)p(θ)

p(x)

See Møller et al. (2004, 2006) and Murray et al. (2006) for partial solutions


