Adrian Weller joined the machine learning group in October 2014, following a PhD in computer science (machine learning) with Prof Tony Jebara at Columbia University. His research has focused on methods for inference in graphical models. Previously he earned an MSc in computer science at Columbia, and a BA in mathematics at Trinity College, Cambridge.
Publications
Discovering interpretable representations for both deep generative and discriminative models
Tameem Adel, Zoubin Ghahramani, Adrian Weller, July 2018. (In 35th International Conference on Machine Learning). Stockholm Sweden.
Abstract▼ URL
Interpretability of representations in both deep generative and discriminative models is highly desirable. Current methods jointly optimize an objective combining accuracy and interpretability. However, this may reduce accuracy, and is not applicable to already trained models. We propose two interpretability frameworks. First, we provide an interpretable lens for an existing model. We use a generative model which takes as input the representation in an existing (generative or discriminative) model, weakly supervised by limited side information. Applying a flexible and invertible transformation to the input leads to an interpretable representation with no loss in accuracy. We extend the approach using an active learning strategy to choose the most useful side information to obtain, allowing a human to guide what “interpretable” means. Our second framework relies on joint optimization for a representation which is both maximally informative about the side information and maximally compressive about the non-interpretable data factors. This leads to a novel perspective on the relationship between compression and regularization. We also propose a new interpretability evaluation metric based on our framework. Empirically, we achieve state-of-the-art results on three datasets using the two proposed algorithms.
One-network Adversarial Fairness
Tameem Adel, Isabel Valera, Zoubin Ghahramani, Adrian Weller, January 2019. (In 33rd AAAI Conference on Artificial Intelligence). Hawaii.
Abstract▼ URL
There is currently a great expansion of the impact of machine learning algorithms on our lives, prompting the need for objectives other than pure performance, including fairness. Fairness here means that the outcome of an automated decision-making system should not discriminate between subgroups characterized by sensitive attributes such as gender or race. Given any existing differentiable classifier, we make only slight adjustments to the architecture including adding a new hidden layer, in order to enable the concurrent adversarial optimization for fairness and accuracy. Our framework provides one way to quantify the tradeoff between fairness and accuracy, while also leading to strong empirical performance.
TibGM: A Transferable and Information-Based Graphical Model Approach for Reinforcement Learning
Tameem Adel, Adrian Weller, June 2019. (In 36th International Conference on Machine Learning). Long Beach.
Abstract▼ URL
One of the challenges to reinforcement learning (RL) is scalable transferability among complex tasks. Incorporating a graphical model (GM), along with the rich family of related methods, as a basis for RL frameworks provides potential to address issues such as transferability, generalisation and exploration. Here we propose a flexible GM-based RL framework which leverages efficient inference procedures to enhance generalisation and transfer power. In our proposed transferable and information-based graphical model framework ‘TibGM’, we show the equivalence between our mutual information-based objective in the GM, and an RL consolidated objective consisting of a standard reward maximisation target and a generalisation/transfer objective. In settings where there is a sparse or deceptive reward signal, our TibGM framework is flexible enough to incorporate exploration bonuses depicting intrinsic rewards. We empirically verify improved performance and exploration power.
Gauged Mini-Bucket Elimination for Approximate Inference
Sungsoo Ahn, Michael Chertkov, Jinwoo Shin, Adrian Weller, April 2018. (In 21st International Conference on Artificial Intelligence and Statistics). Playa Blanca, Lanzarote, Canary Islands.
Abstract▼ URL
Computing the partition function Z of a discrete graphical model is a fundamental inference challenge. Since this is computationally intractable, variational approximations are often used in practice. Recently, so-called gauge transformations were used to improve variational lower bounds on Z. In this paper, we propose a new gauge-variational approach, termed WMBE-G, which combines gauge transformations with the weighted mini-bucket elimination (WMBE) method. WMBE-G can provide both upper and lower bounds on Z, and is easier to optimize than the prior gauge-variational algorithm. We show that WMBE-G strictly improves the earlier WMBE approximation for symmetric models including Ising models with no magnetic field. Our experimental results demonstrate the effectiveness of WMBE-G even for generic, nonsymmetric models.
Bucket renormalization for approximate inference
Sungsoo Ahn, Michael Chertkov, Adrian Weller, Jinwoo Shin, 2018. (In 35th International Conference on Machine Learning).
Abstract▼ URL
Probabilistic graphical models are a key tool in machine learning applications. Computing the partition function, i.e., normalizing constant, is a fundamental task of statistical inference but it is generally computationally intractable, leading to extensive study of approximation methods. Iterative variational methods are a popular and successful family of approaches. However, even state of the art variational methods can return poor results or fail to converge on difficult instances. In this paper, we instead consider computing the partition function via sequential summation over variables. We develop robust approximate algorithms by combining ideas from mini-bucket elimination with tensor network and renormalization group methods from statistical physics. The resulting “convergence-free” methods show good empirical performance on both synthetic and real-world benchmark models, even for difficult instances.
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán, Umang Bhatt, Tameem Adel, Adrian Weller, José Miguel Hernández-Lobato, April 2021. (In 9th International Conference on Learning Representations).
Abstract▼ URL
Both uncertainty estimation and interpretability are important factors for trustworthy machine learning systems. However, there is little work at the intersection of these two areas. We address this gap by proposing a novel method for interpreting uncertainty estimates from differentiable probabilistic models, like Bayesian Neural Networks (BNNs). Our method, Counterfactual Latent Uncertainty Explanations (CLUE), indicates how to change an input, while keeping it on the data manifold, such that a BNN becomes more confident about the input’s prediction. We validate CLUE through 1) a novel framework for evaluating counterfactual explanations of uncertainty, 2) a series of ablation experiments, and 3) a user study. Our experiments show that CLUE outperforms baselines and enables practitioners to better understand which input patterns are responsible for predictive uncertainty..
Partitioned Variational Inferece: A Framework for Probabilistic Federated Learning
Matthew Ashman, Thang D. Bui, Cuong V. Nguyen, Efstratios Markou, Adrian Weller, Siddharth Swaroop, Richard E. Turner, 2022.
Abstract▼ URL
The proliferation of computing devices has brought about an opportunity to deploy machine learning models on new problem domains using previously inaccessible data. Traditional algorithms for training such models often require data to be stored on a single machine with compute performed by a single node, making them unsuitable for decentralised training on multiple devices. This deficiency has motivated the development of federated learning algorithms, which allow multiple data owners to train collaboratively and use a shared model whilst keeping local data private. However, many of these algorithms focus on obtaining point estimates of model parameters, rather than probabilistic estimates capable of capturing model uncertainty, which is essential in many applications. Variational inference (VI) has become the method of choice for fitting many modern probabilistic models. In this paper we introduce partitioned variational inference (PVI), a general framework for performing VI in the federated setting. We develop new supporting theory for PVI, demonstrating a number of properties that make it an attractive choice for practitioners; use PVI to unify a wealth of fragmented, yet related literature; and provide empirical results that showcase the effectiveness of PVI in a variety of federated settings.
On the Utility of Prediction Sets in Human-AI Teams
Varun Babbar, Umang Bhatt, Adrian Weller, 2022. (In International Joint Conference on Artificial Intelligence).
Abstract▼ URL
Research on human-AI teams usually provides experts with a single label, which ignores the uncertainty in a model’s recommendation. Conformal prediction (CP) is a well established line of research that focuses on building a theoretically grounded, calibrated prediction set, which may contain multiple labels. We explore how such prediction sets impact expert decision-making in human-AI teams. Our evaluation on human subjects finds that set valued predictions positively impact experts. However, we notice that the predictive sets provided by CP can be very large, which leads to unhelpful AI assistants. To mitigate this, we introduce D-CP, a method to perform CP on some examples and defer to experts. We prove that D-CP can reduce the prediction set size of non-deferred examples. We show how D-CP performs in quantitative and in human subject experiments (n=120). Our results suggest that CP prediction sets improve human-AI team performance over showing the top-1 prediction alone, and that experts find D-CP prediction sets are more useful than CP prediction sets.
Lost Relatives of the Gumbel Trick
Matej Balog, Nilesh Tripuraneni, Zoubin Ghahramani, Adrian Weller, August 2017. (In 34th International Conference on Machine Learning). Sydney, Australia.
Abstract▼ URL
The Gumbel trick is a method to sample from a discrete probability distribution, or to estimate its normalizing partition function. The method relies on repeatedly applying a random perturbation to the distribution in a particular way, each time solving for the most likely configuration. We derive an entire family of related methods, of which the Gumbel trick is one member, and show that the new methods have superior properties in several settings with minimal additional computational cost. In particular, for the Gumbel trick to yield computational benefits for discrete graphical models, Gumbel perturbations on all configurations are typically replaced with so-called low-rank perturbations. We show how a subfamily of our new methods adapts to this setting, proving new upper and lower bounds on the log partition function and deriving a family of sequential samplers for the Gibbs distribution. Finally, we balance the discussion by showing how the simpler analytical form of the Gumbel trick enables additional theoretical results.
Mapping Intelligence: Requirements and Possibilities
Sankalp Bhatnagar, Anna Alexandrova, Shahar Avin, Stephen Cave, Lucy Cheke, Matthew Crosby, Jan Feyereisl, Marta Halina, Bao Sheng Loe, Sean o Heigeartaigh, Fernando Martínez-Plumed, Huw Price, Henry Shevlin, Adrian Weller, Alan Winfield, Jose Hernandez-Orallo, 2017. (In Philosophy and Theory of Artificial Intelligence (PT-AI)).
Abstract▼ URL
New types of artificial intelligence (AI), from cognitive assistants to social robots, are challenging meaningful comparison with other kinds of intelligence. How can such intelligent systems be catalogued, evaluated, and contrasted, with representations and projections that offer meaningful insights? To catalyse the research in AI and the future of cognition, we present the motivation, requirements and possibilities for an atlas of intelligence: an integrated framework and collaborative open repository for collecting and exhibiting information of all kinds of intelligence, including humans, non-human animals, AI systems, hybrids and collectives thereof. After presenting this initiative, we review related efforts and present the requirements of such a framework. We survey existing visualisations and representations, and discuss which criteria of inclusion should be used to configure an atlas of intelligence.
Evaluating and Aggregating Feature-based Model Explanations
Umang Bhatt, Adrian Weller, Jose M. F. Moura, 2020. (In International Joint Conference on Artificial Intelligence).
Abstract▼ URL
A feature-based model explanation denotes how much each input feature contributes to a model’s output for a given data point. As the number of proposed explanation functions grows, we lack quantitative evaluation criteria to help practitioners know when to use which explanation function. This paper proposes quantitative evaluation criteria for feature-based explanations: low sensitivity, high faithfulness, and low complexity. We devise a framework for aggregating explanation functions. We develop a procedure for learning an aggregate explanation function with lower complexity and then derive a new aggregate Shapley value explanation function that minimizes sensitivity.
Explainable Machine Learning in Deployment
Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Yunhan Jia, Joydeep Ghosh, Ruchir Puri, José M. F. Moura, Peter Eckersley, 2020. (In ACM Conference on Fairness, Accountability, and Transparency (FAT*)).
Abstract▼ URL
Explainable machine learning offers the potential to provide stakeholders with insights into model behavior by using various methods such as feature importance scores, counterfactual explanations, or influential training data. Yet there is little understanding of how organizations use these methods in practice. This study explores how organizations view and use explainability for stakeholder consumption. We find that, currently, the majority of deployments are not for end users affected by the model but rather for machine learning engineers, who use explainability to debug the model itself. There is thus a gap between explainability in practice and the goal of transparency, since explanations primarily serve internal stakeholders rather than external ones. Our study synthesizes the limitations of current explainability techniques that hamper their use for end users. To facilitate end user interaction, we develop a framework for establishing clear goals for explainability. We end by discussing concerns raised regarding explainability.
Racial Disparities in the Enforcement of Marijuana Violations in the US
Bradley Butcher, Chris Robinson, Miri Zilka, Riccardo Fogliato, Carolyn Ashurst, Adrian Weller, 2022. (Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society).
Abstract▼ URL
Racial disparities in US drug arrest rates have been observed for decades, but their causes and policy implications are still contested. Some have argued that the disparities largely reflect differences in drug use between racial groups, while others have hypothesized that discriminatory enforcement policies and police practices play a significant role. In this work, we analyze racial disparities in the enforcement of marijuana violations in the US. Using data from the National Incident-Based Reporting System (NIBRS) and the National Survey on Drug Use and Health (NSDUH) programs, we investigate whether marijuana usage and purchasing behaviors can explain the racial composition of offenders in police records. We examine potential driving mechanisms behind these disparities and the extent to which county-level socioeconomic factors are associated with corresponding disparities. Our results indicate that the significant racial disparities in reported incidents and arrests cannot be explained by differences in marijuana days-of-use alone. Variations in the location where marijuana is purchased and in the frequency of these purchases partially explain the observed disparities. We observe an increase in racial disparities across most counties over the last decade, with the greatest increases in states that legalized the use of marijuana within this timeframe. Income, high school graduation rate, and rate of employment positively correlate with larger racial disparities, while the rate of incarceration is negatively correlated. We conclude with a discussion of the implications of the observed racial disparities in the context of algorithmic fairness.
Motivations and Risks of Machine Ethics
Stephen Cave, Rune Nyrup, Karina Vold, Adrian Weller, 2019. (Proceedings of the IEEE).
Abstract▼ URL
This paper surveys reasons for and against pursuing the field of machine ethics, understood as research aiming to build “ethical machines.” We clarify the nature of this goal, why it is worth pursuing, and the risks involved in its pursuit. First, we survey and clarify some of the philosophical issues surrounding the concept of an “ethical machine” and the aims of machine ethics. Second, we argue that while there are good prima facie reasons for pursuing machine ethics, including the potential to improve the ethical alignment of both humans and machines, there are also potential risks that must be considered. Third, we survey these potential risks and point to where research should be devoted to clarifying and managing potential risks. We conclude by making some recommendations about the questions that future work could address.
Stochastic Flows and Geometric Optimization on the Orthogonal Group
Krzysztof Choromanski, David Cheikhi, Jared Davis, Valerii Likhosherstov, Achille Nazaret, Achraf Bahamou, Xingyou Song, Mrugank Akarte, Jack Parker-Holder, Jacob Bergquist, Yuan Gao, Aldo Pacchiano, Tamas Sarlos, Adrian Weller, Vikas Sindhwani, 2020. (In 37th International Conference on Machine Learning).
Abstract▼ URL
We present a new class of stochastic, geometrically-driven optimization algorithms on the orthogonal group O(d) and naturally reductive homogeneous manifolds obtained from the action of the rotation group SO(d). We theoretically and experimentally demonstrate that our methods can be applied in various fields of machine learning including deep, convolutional and recurrent neural networks, reinforcement learning, normalizing flows and metric learning. We show an intriguing connection between efficient stochastic optimization on the orthogonal group and graph theory (e.g. matching problem, partition functions over graphs, graph-coloring). We leverage the theory of Lie groups and provide theoretical results for the designed class of algorithms. We demonstrate broad applicability of our methods by showing strong performance on the seemingly unrelated tasks of learning world models to obtain stable policies for the most difficult Humanoid agent from OpenAI Gym and improving convolutional neural networks.
Rethinking Attention with Performers
Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, David Benjamin Belanger, Lucy J Colwell, Adrian Weller, 2021. (In International Conference on Learning Representations).
Abstract▼ URL
We introduce Performers, Transformer architectures which can estimate regular (softmax) full-rank-attention Transformers with provable accuracy, but using only linear (as opposed to quadratic) space and time complexity, without relying on any priors such as sparsity or low-rankness. To approximate softmax attention-kernels, Performers use a novel Fast Attention Via positive Orthogonal Random features approach (FAVOR+), which may be of independent interest for scalable kernel methods. FAVOR+ can also be used to efficiently model kernelizable attention mechanisms beyond softmax. This representational power is crucial to accurately compare softmax with other kernels for the first time on large-scale tasks, beyond the reach of regular Transformers, and investigate optimal attention-kernels. Performers are linear architectures fully compatible with regular Transformers and with strong theoretical guarantees: unbiased or nearly-unbiased estimation of the attention matrix, uniform convergence and low estimation variance. We tested Performers on a rich set of tasks stretching from pixel-prediction through text models to protein sequence modeling. We demonstrate competitive results with other examined efficient sparse and dense attention methods, showcasing effectiveness of the novel attention-learning paradigm leveraged by Performers.
Unifying Orthogonal Monte Carlo Methods
Krzysztof Choromanski, Mark Rowland, Wenyu Chen, Adrian Weller, June 2019. (In 36th International Conference on Machine Learning). Long Beach.
Abstract▼ URL
Many machine learning methods making use of Monte Carlo sampling in vector spaces have been shown to be improved by conditioning samples to be mutually orthogonal. Exact orthogonal coupling of samples is computationally intensive, hence approximate methods have been of great interest. In this paper, we present a unifying perspective of many approximate methods by considering Givens transformations, propose new approximate methods based on this framework, and demonstrate the first statistical guarantees for families of approximate methods in kernel approximation. We provide extensive empirical evaluations with guidance for practitioners.
The Geometry of Random Features
Krzysztof Choromanski, Mark Rowland, Tamas Sarlos, Vikas Sindhwani, Richard E. Turner, Adrian Weller, April 2018. (In 21st International Conference on Artificial Intelligence and Statistics). Playa Blanca, Lanzarote, Canary Islands.
Abstract▼ URL
We present an in-depth examination of the effectiveness of radial basis function kernel (beyond Gaussian) estimators based on orthogonal random feature maps. We show that orthogonal estimators outperform state-of-the-art mechanisms that use iid sampling under weak conditions for tails of the associated Fourier distributions. We prove that for the case of many dimensions, the superiority of the orthogonal transform can be accurately measured by a property we define called the charm of the kernel, and that orthogonal random features provide optimal (in terms of mean squared error) kernel estimators. We provide the first theoretical results which explain why orthogonal random features outperform unstructured on downstream tasks such as kernel ridge regression by showing that orthogonal random features provide kernel algorithms with better spectral properties than the previous state-of-the-art. Our results enable practitioners more generally to estimate the benefits from applying orthogonal transforms.
Structured evolution with compact architectures for scalable policy optimization
Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard Turner, Adrian Weller, July 2018. (In 35th International Conference on Machine Learning). Stockholm Sweden.
Abstract▼ URL
We present a new method of blackbox optimization via gradient approximation with the use of structured random orthogonal matrices, providing more accurate estimators than baselines and with provable theoretical guarantees. We show that this algorithm can be successfully applied to learn better quality compact policies than those using standard gradient estimation techniques. The compact policies we learn have several advantages over unstructured ones, including faster training algorithms and faster inference. These benefits are important when the policy is deployed on real hardware with limited resources. Further, compact policies provide more scalable architectures for derivative-free optimization (DFO) in high dimensional spaces. We show that most robotics tasks from the OpenAI Gym can be solved using neural networks with less than 300 parameters, with almost linear time complexity of the inference phase, with up to 13x fewer parameters relative to the Evolution Strategies (ES) algorithm introduced by Salimans et al. (2017). We do not need heuristics such as fitness shaping to learn good quality policies, resulting in a simple and theoretically motivated training mechanism.
The unreasonable effectiveness of structured random orthogonal embeddings
Krzysztof Choromanski, Mark Rowland, Adrian Weller, December 2017. (In Advances in Neural Information Processing Systems 31). Long Beach, California.
Abstract▼ URL
We examine a class of embeddings based on structured random matrices with orthogonal rows which can be applied in many machine learning applications including dimensionality reduction and kernel approximation. For both the Johnson-Lindenstrauss transform and the angular kernel, we show that we can select matrices yielding guaranteed improved performance in accuracy and/or speed compared to earlier methods. We introduce matrices with complex entries which give significant further accuracy improvement. We provide geometric and Markov chain-based perspectives to help understand the benefits, and empirical results which suggest that the approach is helpful in a wider range of applications.
Eliciting and Learning with Soft Labels from Every Annotator
Katherine M. Collins, Umang Bhatt, Adrian Weller, 2022. (In Proceedings of the AAAI Conference on Human Computation and Crowdsourcing (HCOMP)). DOI: 10.17863/CAM.87954.
Abstract▼ URL
The labels used to train machine learning (ML) models are of paramount importance. Typically for ML classification tasks, datasets contain hard labels, yet learning using soft labels has been shown to yield benefits for model generalization, robustness, and calibration. Earlier work found success in forming soft labels from multiple annotators’ hard labels; however, this approach may not converge to the best labels and necessitates many annotators, which can be expensive and inefficient. We focus on efficiently eliciting soft labels from individual annotators. We collect and release a dataset of soft labels (which we call CIFAR-10S) over the CIFAR-10 test set via a crowdsourcing study (N=248). We demonstrate that learning with our labels achieves comparable model performance to prior approaches while requiring far fewer annotators – albeit with significant temporal costs per elicitation. Our elicitation methodology therefore shows nuanced promise in enabling practitioners to enjoy the benefits of improved model performance and reliability with fewer annotators, and serves as a guide for future dataset curators on the benefits of leveraging richer information, such as categorical uncertainty, from individual annotators.
Comment: [Project Page] [Data] [Code]
Can We Automate the Analysis of Online Child Sexual Exploitation Discourse?
Darren Cook, Miri Zilka, Heidi DeSandre, Susan Giles, Adrian Weller, Simon Maskell, 2022. (arXiv).
Abstract▼ URL
Social media’s growing popularity raises concerns around children’s online safety. Interactions between minors and adults with predatory intentions is a particularly grave concern. Research into online sexual grooming has often relied on domain experts to manually annotate conversations, limiting both scale and scope. In this work, we test how well-automated methods can detect conversational behaviors and replace an expert human annotator. Informed by psychological theories of online grooming, we label 6772 chat messages sent by child-sex offenders with one of eleven predatory behaviors. We train bag-of-words and natural language inference models to classify each behavior, and show that the best performing models classify behaviors in a manner that is consistent, but not on-par, with human annotation.
You shouldn’t trust me: Learning models which conceal unfairness from multiple explanation methods
Botty Dimanov, Umang Bhatt, Mateja Jamnik, Adrian Weller, 2020. (In European Conference on Artificial Intelligence (ECAI)).
Abstract▼ URL
Transparency of algorithmic systems has been discussed as a way for end-users and regulators to develop appropriate trust in machine learning models. One popular approach, LIME [26], even suggests that model explanations can answer the question “Why should I trust you?” Here we show a straightforward method for modifying a pre-trained model to manipulate the output of many popular feature importance explanation methods with little change in accuracy, thus demonstrating the danger of trusting such explanation methods. We show how this explanation attack can mask a model’s discriminatory use of a sensitive feature, raising strong concerns about using such explanation methods to check model fairness.
Human perceptions of fairness in algorithmic decision making: A case study of criminal risk prediction
Nina Grgić-Hlača, Elissa Redmiles, Krishna P. Gummadi, Adrian Weller, April 2018. (In The Web Conference (WWW)). Lyon.
Abstract▼ URL
As algorithms are increasingly used to make important decisions that affect human lives, ranging from social benefit assignment to predicting risk of criminal recidivism, concerns have been raised about the fairness of algorithmic decision making. Most prior works on algorithmic fairness normatively prescribe how fair decisions ought to be made. In contrast, here, we descriptively survey users for how they perceive and reason about fairness in algorithmic decision making. A key contribution of this work is the framework we propose to understand why people perceive certain features as fair or unfair to be used in algorithms. Our framework identifies eight properties of features, such as relevance, volitionality and reliability, as latent considerations that inform people’s moral judgments about the fairness of feature use in decision-making algorithms. We validate our framework through a series of scenario-based surveys with 576 people. We find that, based on a person’s assessment of the eight latent properties of a feature in our exemplar scenario, we can accurately (> 85%) predict if the person will judge the use of the feature as fair. Our findings have important implications. At a high-level, we show that people’s unfairness concerns are multi-dimensional and argue that future studies need to address unfairness concerns beyond discrimination. At a low-level, we find considerable disagreements in people’s fairness judgments. We identify root causes of the disagreements, and note possible pathways to resolve them.
Beyond Distributive Fairness in Algorithmic Decision Making: Feature Selection for Procedurally Fair Learning
N. Grgić-Hlača, M. B. Zafar, K. P. Gummadi, A. Weller, February 2018. (In 32nd AAAI Conference on Artificial Intelligence). New Orleans.
Abstract▼ URL
With wide-spread usage of machine learning methods in numerous domains involving human subjects, several studies have raised questions about the potential for unfairness towards certain individuals or groups. A number of recent works have proposed methods to measure and eliminate unfairness from machine learning methods. However, most of this work on fair learning has focused on only one dimension of fair decision making: distributive fairness, i.e., the fairness of the decision outcomes. In this work, we leverage the rich literature on organizational justice and focus on another dimension of fair decision making: procedural fairness, i.e., the fairness of the decision making process. We propose measures for procedural fairness that consider the input features used in the decision process, and evaluate the moral judgments of humans regarding the use of these features. We operationalize these measures on two real world datasets using human surveys on the Amazon Mechanical Turk (AMT) platform, demonstrating that we capture important properties of procedurally fair decision making. We provide fast submodular mechanisms to optimize the tradeoff between procedural fairness and prediction accuracy. On our datasets, we observe empirically that procedural fairness may be achieved with little cost to outcome fairness, but that some loss of accuracy is unavoidable.
The sensitivity of counterfactual fairness to unmeasured confounding
Niki Kilbertus, Phil Ball, Matt Kusner, Adrian Weller, Ricardo Silva, July 2019. (In 35th Conference on Uncertainty in Artificial Intelligence). Tel Aviv.
Abstract▼ URL
Causal approaches to fairness have seen substantial recent interest, both from the machine learning community and from wider parties interested in ethical prediction algorithms. In no small part, this has been due to the fact that causal models allow one to simultaneously leverage data and expert knowledge to remove discriminatory effects from predictions. However, one of the primary assumptions in causal modeling is that you know the causal graph. This introduces a new opportunity for bias, caused by misspecifying the causal model. One common way for misspecification to occur is via unmeasured confounding: the true causal effect between variables is partially described by unobserved quantities. In this work we design tools to assess the sensitivity of fairness measures to this confounding for the popular class of non-linear additive noise models (ANMs). Specifically, we give a procedure for computing the maximum difference between two counterfactually fair predictors, where one has become biased due to confounding. For the case of bivariate confounding our technique can be swiftly computed via a sequence of closed-form updates. For multivariate confounding we give an algorithm that can be efficiently solved via automatic differentiation. We demonstrate our new sensitivity analysis tools in real-world fairness scenarios to assess the bias arising from confounding.
Blind justice: Fairness with encrypted sensitive attributes
Niki Kilbertus, Adria Gascon, Matt Kusner, Michael Veale, Krishna P. Gummadi, Adrian Weller, July 2018. (In 35th International Conference on Machine Learning). Stockholm Sweden.
Abstract▼ URL
Recent work has explored how to train machine learning models which do not discriminate against any subgroup of the population as determined by sensitive attributes such as gender or race. To avoid disparate treatment, sensitive attributes should not be considered. On the other hand, in order to avoid disparate impact, sensitive attributes must be examined — e.g., in order to learn a fair model, or to check if a given model is fair. We introduce methods from secure multi-party computation which allow us to avoid both. By encrypting sensitive attributes, we show how an outcome based fair model may be learned, checked, or have its outputs verified and held to account, without users revealing their sensitive attributes.
Optimal experimental design via Bayesian optimization: active causal structure learning for Gaussian process networks
J. von Kügelgen, P. K. Rubenstein, B. Schölkopf, A. Weller, December 2019. (In NeurIPS 2019 Workshop Do the right thing: machine learning and causal inference for improved decision making).
Abstract▼ URL
We study the problem of causal discovery through targeted interventions. Starting from few observational measurements, we follow a Bayesian active learning approach to perform those experiments which, in expectation with respect to the current model, are maximally informative about the underlying causal structure. Unlike previous work, we consider the setting of continuous random variables with non-linear functional relationships, modelled with Gaussian process priors. To address the arising problem of choosing from an uncountable set of possible interventions, we propose to use Bayesian optimisation to efficiently maximise a Monte Carlo estimate of the expected information gain.
On the Fairness of Causal Algorithmic Recourse
J. von Kügelgen, A.-H. Karimi, U. Bhatt, I. Valera, A. Weller, B. Schölkopf, 2022. (In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI)).
Abstract▼ URL
Algorithmic fairness is typically studied from the perspective of predictions. Instead, here we investigate fairness from the perspective of recourse actions suggested to individuals to remedy an unfavourable classification. We propose two new fairness criteria at the group and individual level, which – unlike prior work on equalising the average group-wise distance from the decision boundary – explicitly account for causal relationships between features, thereby capturing downstream effects of recourse actions performed in the physical world. We explore how our criteria relate to others, such as counterfactual fairness, and show that fairness of recourse is complementary to fairness of prediction. We study theoretically and empirically how to enforce fair causal recourse by altering the classifier and perform a case study on the Adult dataset. Finally, we discuss whether fairness violations in the data generating process revealed by our criteria may be better addressed by societal interventions as opposed to constraints on the classifier.
Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates
Dan Ley, Umang Bhatt, Adrian Weller, 2022. (In Proceedings of the 36th AAAI Conference on Artificial Intelligence (AAAI)).
Abstract▼ URL
To interpret uncertainty estimates from differentiable probabilistic models, recent work has proposed generating a single Counterfactual Latent Uncertainty Explanation (CLUE) for a given data point where the model is uncertain. We broaden the exploration to examine δ-CLUE, the set of potential CLUEs within a δ ball of the original input in latent space. We study the diversity of such sets and find that many CLUEs are redundant; as such, we propose DIVerse CLUE (∇-CLUE), a set of CLUEs which each propose a distinct explanation as to how one can decrease the uncertainty associated with an input. We then further propose GLobal AMortised CLUE (GLAM-CLUE), a distinct, novel method which learns amortised mappings that apply to specific groups of uncertain inputs, taking them and efficiently transforming them in a single function call into inputs for which a model will be certain. Our experiments show that δ-CLUE, ∇-CLUE, and GLAM-CLUE all address shortcomings of CLUE and provide beneficial explanations of uncertainty estimates to practitioners.
PolyViT: Co-training Vision Transformers on Images, Videos and Audio
Valerii Likhosherstov, Anurag Arnab, Krzysztof Choromanski, Mario Lucic, Yi Tay, Adrian Weller, Mostafa Dehghani, 2021. (CoRR).
Abstract▼ URL
Can we train a single transformer model capable of processing multiple modalities and datasets, whilst sharing almost all of its learnable parameters? We present PolyViT, a model trained on image, audio and video which answers this question. By co-training different tasks on a single modality, we are able to improve the accuracy of each individual task and achieve state-of-the-art results on 5 standard video- and audio-classification datasets. Co-training PolyViT on multiple modalities and tasks leads to a model that is even more parameter-efficient, and learns representations that generalize across multiple domains. Moreover, we show that co-training is simple and practical to implement, as we do not need to tune hyperparameters for each combination of datasets, but can simply adapt those from standard, single-task training.
Sub-Linear Memory: How to Make Performers SLiM
Valerii Likhosherstov, Krzysztof M Choromanski, Jared Quincy Davis, Xingyou Song, Adrian Weller, 2021. (In Advances in Neural Information Processing Systems). Edited by M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, J. Wortman Vaughan. Curran Associates, Inc..
Abstract▼ URL
The Transformer architecture has revolutionized deep learning on sequential data, becoming ubiquitous in state-of-the-art solutions for a wide variety of applications. Yet vanilla Transformers are notoriously resource-expensive, requiring O(L2) in serial time and memory as functions of input length L. Recent works proposed various linear self-attention mechanisms, scaling only as O(L) for serial computation. We perform a thorough analysis of recent Transformer mechanisms with linear self-attention, Performers, in terms of overall computational complexity. We observe a remarkable computational flexibility: forward and backward propagation can be performed with no approximations using sublinear memory as a function of L (in addition to negligible storage for the input sequence), at a cost of greater time complexity in the parallel setting. In the extreme case, a Performer consumes only O(1) memory during training, and still requires O(L) time. This discovered time-memory tradeoff can be used for training or, due to complete backward-compatibility, for fine-tuning on a low-memory device, e.g. a smartphone or an earlier-generation GPU, thus contributing towards decentralized and democratized deep learning.
Chefs’ Random Tables: Non-Trigonometric Random Features
Valerii Likhosherstov, Krzysztof Choromanski, Avinava Dubey, Frederick Liu, Tamas Sarlos, Adrian Weller, 2022. arXiv. DOI: 10.48550/ARXIV.2205.15317.
Abstract▼ URL
We introduce chefs’ random tables (CRTs), a new class of non-trigonometric random features (RFs) to approximate Gaussian and softmax kernels. CRTs are an alternative to standard random kitchen sink (RKS) methods, which inherently rely on the trigonometric maps. We present variants of CRTs where RFs are positive, a key requirement for applications in recent low-rank Transformers. Further variance reduction is possible by leveraging statistics which are simple to compute. One instantiation of CRTs, the optimal positive random features (OPRFs), is to our knowledge the first RF method for unbiased softmax kernel estimation with positive and bounded RFs, resulting in exponentially small tails and much lower variance than its counterparts. As we show, orthogonal random features applied in OPRFs provide additional variance reduction for any dimensionality d (not only asymptotically for sufficiently large d, as for RKS). We test CRTs on many tasks ranging from non-parametric classification to training Transformers for text, speech and image data, obtaining new state-of-the-art results for low-rank text Transformers, while providing linear space and time complexity.
CWY Parametrization: a Solution for Parallelized Optimization of Orthogonal and Stiefel Matrices
Valerii Likhosherstov, Jared Davis, Krzysztof Choromanski, Adrian Weller, 13–15 Apr 2021. (In Proceedings of The 24th International Conference on Artificial Intelligence and Statistics). Edited by Arindam Banerjee, Kenji Fukumizu. PMLR. Proceedings of Machine Learning Research.
Abstract▼ URL
We introduce an efficient approach for optimization over orthogonal groups on highly parallel computation units such as GPUs or TPUs. As in earlier work, we parametrize an orthogonal matrix as a product of Householder reflections. However, to overcome low parallelization capabilities of computing Householder reflections sequentially, we propose employing an accumulation scheme called the compact WY (or CWY) transform – a compact parallelization-friendly matrix representation for the series of Householder reflections. We further develop a novel Truncated CWY (or T-CWY) approach for Stiefel manifold parametrization which has a competitive complexity and, again, yields benefits when computed on GPUs and TPUs. We prove that our CWY and T-CWY methods lead to convergence to a stationary point of the training objective when coupled with stochastic gradient descent. We apply our methods to train recurrent neural network architectures in the tasks of neural machine translation and video prediction.
Debiasing a First-order Heuristic for Approximate Bi-level Optimization
Valerii Likhosherstov, Xingyou Song, Krzysztof Choromanski, Jared Q Davis, Adrian Weller, 18–24 Jul 2021. (In Proceedings of the 38th International Conference on Machine Learning). Edited by Marina Meila, Tong Zhang. PMLR. Proceedings of Machine Learning Research.
Abstract▼ URL
Approximate bi-level optimization (ABLO) consists of (outer-level) optimization problems, involving numerical (inner-level) optimization loops. While ABLO has many applications across deep learning, it suffers from time and memory complexity proportional to the length r of its inner optimization loop. To address this complexity, an earlier first-order method (FOM) was proposed as a heuristic which omits second derivative terms, yielding significant speed gains and requiring only constant memory. Despite FOM’s popularity, there is a lack of theoretical understanding of its convergence properties. We contribute by theoretically characterizing FOM’s gradient bias under mild assumptions. We further demonstrate a rich family of examples where FOM-based SGD does not converge to a stationary point of the ABLO objective. We address this concern by proposing an unbiased FOM (UFOM) enjoying constant memory complexity as a function of r. We characterize the introduced time-variance tradeoff, demonstrate convergence bounds, and find an optimal UFOM for a given ABLO problem. Finally, we propose an efficient adaptive UFOM scheme.
Concrete Problems for Autonomous Vehicle Safety: Advantages of Bayesian Deep Learning,
Rowan McAllister, Yarin Gal, Alex Kendall, Mark van der Wilk, Amar Shah, Roberto Cipolla, Adrian Weller, August 2017. (In International Joint Conference on Artificial Intelligence). Melbourne, Australia.
Abstract▼ URL
Autonomous vehicle (AV) software is typically composed of a pipeline of individual components, linking sensor inputs to motor outputs. Erroneous component outputs propagate downstream, hence safe AV software must consider the ultimate effect of each component’s errors. Further, improving safety alone is not sufficient. Passengers must also feel safe to trust and use AV systems. To address such concerns, we investigate three under-explored themes for AV research: safety, interpretability, and compliance. Safety can be improved by quantifying the uncertainties of component outputs and propagating them forward through the pipeline. Interpretability is concerned with explaining what the AV observes and why it makes the decisions it does, building reassurance with the passenger. Compliance refers to maintaining some control for the passenger. We discuss open challenges for research within these themes. We highlight the need for concrete evaluation metrics, propose example problems, and highlight possible solutions.
Train and Test Tightness of LP Relaxations in Structured Prediction
Ofer Meshi, Ben London, Adrian Weller, David Sontag, 2019. (Journal of Machine Learning Research).
Abstract▼ URL
Structured prediction is used in areas including computer vision and natural language processing to predict structured outputs such as segmentations or parse trees. In these settings, prediction is performed by MAP inference or, equivalently, by solving an integer linear program. Because of the complex scoring functions required to obtain accurate predictions, both learning and inference typically require the use of approximate solvers. We propose a theoretical explanation for the striking observation that approximations based on linear programming (LP) relaxations are often tight (exact) on real-world instances. In particular, we show that learning with LP relaxed inference encourages integrality of training instances, and that this training tightness generalizes to test data.
Train and Test Tightness of LP Relaxations in Structured Prediction
Ofer Meshi, Mehrdad Mahdavi, Adrian Weller, David Sontag, June 2016. (In 33rd International Conference on Machine Learning). New York, NY.
Abstract▼ URL
Structured prediction is used in areas such as computer vision and natural language processing to predict structured outputs such as segmentations or parse trees. In these settings, prediction is performed by MAP inference or, equivalently, by solving an integer linear program. Because of the complex scoring functions required to obtain accurate predictions, both learning and inference typically require the use of approximate solvers. We propose a theoretical explanation to the striking observation that approximations based on linear programming (LP) relaxations are often tight on real-world instances. In particular, we show that learning with LP relaxed inference encourages integrality of training instances, and that tightness generalizes from train to test data.
An Algorithmic Framework for Positive Action
Oliver Thomas, Miri Zilka, Adrian Weller, Novi Quadrianto, 2021. (Equity and Access in Algorithms, Mechanisms, and Optimization).
Abstract▼ URL
Positive action is defined within anti-discrimination legislation as voluntary, legal action taken to address an imbalance of opportunity affecting individuals belonging to under-represented groups. Within this theme, we propose a novel algorithmic fairness framework to advance equal representation while respecting anti-discrimination legislation and equal-treatment rights. We use a counterfactual fairness approach to assign one of three outcomes to each candidate: accept; reject; or flagged as a positive action candidate.
Geometrically coupled Monte Carlo sampling
Mark Rowland, Krzysztof Choromanski, Francois Chalus, Aldo Pacchiano, Tamas Sarlos, Richard Turner, Adrian Weller, December 2018. (In Advances in Neural Information Processing Systems 32). Montreal Canada.
Abstract▼ URL
Monte Carlo sampling in high-dimensional, low-sample settings is important in many machine learning tasks. We improve current methods for sampling in Euclidean spaces by avoiding independence, and instead consider ways to couple samples. We show fundamental connections to optimal transport theory, leading to novel sampling algorithms, and providing new theoretical grounding for existing strategies. We compare our new strategies against prior methods for improving sample efficiency, including quasi-Monte Carlo, by studying discrepancy. We explore our findings empirically, and observe benefits of our sampling schemes for reinforcement learning and generative modelling.
Orthogonal Estimation of Wasserstein Distances
Mark Rowland, Jiri Hron, Yunhao Tang, Krzysztof Choromanski, Tamas Sarlos, Adrian Weller, April 2019. (In 22nd International Conference on Artificial Intelligence and Statistics). Okinawa, Japan.
Abstract▼ URL
Wasserstein distances are increasingly used in a wide variety of applications in machine learning. Sliced Wasserstein distances form an important subclass which may be estimated efficiently through one-dimensional sorting operations. In this paper, we propose a new variant of sliced Wasserstein distance, study the use of orthogonal coupling in Monte Carlo estimation of Wasserstein distances and draw connections with stratified sampling, and evaluate our approaches experimentally in a range of large-scale experiments in generative modelling and reinforcement learning.
Conditions beyond treewidth for tightness of higher-order LP relaxations
Mark Rowland, Aldo Pacchiano, Adrian Weller, April 2017. (In 20th International Conference on Artificial Intelligence and Statistics). Fort Lauderdale, Florida.
Abstract▼ URL
Linear programming (LP) relaxations are a popular method to attempt to find a most likely configuration of a discrete graphical model. If a solution to the relaxed problem is obtained at an integral vertex then the solution is guaranteed to be exact and we say that the relaxation is tight. We consider binary pairwise models and introduce new methods which allow us to demonstrate refined conditions for tightness of LP relaxations in the Sherali-Adams hierarchy. Our results include showing that for higher order LP relaxations, treewidth is not precisely the right way to characterize tightness. This work is primarily theoretical, with insights that can improve efficiency in practice.
Uprooting and rerooting higher-order graphical models
Mark Rowland, Adrian Weller, December 2017. (In Advances in Neural Information Processing Systems 31). Long Beach, California.
Abstract▼ URL
The idea of uprooting and rerooting graphical models was introduced specifically for binary pairwise models by Weller [18] as a way to transform a model to any of a whole equivalence class of related models, such that inference on any one model yields inference results for all others. This is very helpful since inference, or relevant bounds, may be much easier to obtain or more accurate for some model in the class. Here we introduce methods to extend the approach to models with higher-order potentials and develop theoretical insights. For example, we demonstrate that the triplet-consistent polytope TRI is unique in being ‘universally rooted’. We demonstrate empirically that rerooting can significantly improve accuracy of methods of inference for higher-order models at negligible computational cost.
A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Individual and Group Unfairness via Inequality Indices
Till Speicher, Hoda Heidari, Nina Grgic-Hlaca, Krishna P. Gummadi, Adish Singla, Adrian Weller, Muhammad Bilal Zafar, 2018. (In KDD).
Abstract▼ URL
Discrimination via algorithmic decision making has received considerable attention. Prior work largely focuses on defining conditions for fairness, but does not define satisfactory measures of algorithmic unfairness. In this paper, we focus on the following question: Given two unfair algorithms, how should we determine which of the two is more unfair? Our core idea is to use existing inequality indices from economics to measure how unequally the outcomes of an algorithm benefit different individuals or groups in a population. Our work offers a justified and general framework to compare and contrast the (un)fairness of algorithmic predictors. This unifying approach enables us to quantify unfairness both at the individual and the group level. Further, our work reveals overlooked tradeoffs between different fairness notions: using our proposed measures, the overall individual-level unfairness of an algorithm can be decomposed into a between-group and a within-group component. Earlier methods are typically designed to tackle only between-group unfairness, which may be justified for legal or other reasons. However, we demonstrate that minimizing exclusively the between-group component may, in fact, increase the within-group, and hence the overall unfairness. We characterize and illustrate the tradeoffs between our measures of (un)fairness and the prediction accuracy.
Leader stochastic gradient descent (LSGD) for distributed training of deep learning models
Yunfei Teng, Wenbo Gao, Francois Chalus, Anna Choromanska, Donald Goldfarb, Adrian Weller, December 2019. (In Advances in Neural Information Processing Systems 33). Vancouver.
Abstract▼ URL
We consider distributed optimization under communication constraints for training deep learning models. We propose a new algorithm, whose parameter updates rely on two forces: a regular gradient step, and a corrective direction dictated by the currently best-performing worker (leader). Our method differs from the parameter-averaging scheme EASGD in a number of ways: (i) our objective formulation does not change the location of stationary points compared to the original optimization problem; (ii) we avoid convergence decelerations caused by pulling local workers descending to different local minima to each other (i.e. to the average of their parameters); (iii) our update by design breaks the curse of symmetry (the phenomenon of being trapped in poorly generalizing sub-optimal solutions in symmetric non-convex landscapes); and (iv) our approach is more communication efficient since it broadcasts only parameters of the leader rather than all workers. We provide theoretical analysis of the batch version of the proposed algorithm, which we call Leader Gradient Descent (LGD), and its stochastic variant (LSGD). Finally, we implement an asynchronous version of our algorithm and extend it to the multi-leader setting, where we form groups of workers, each represented by its own local leader (the best performer in a group), and update each worker with a corrective direction comprised of two attractive forces: one to the local, and one to the global leader (the best performer among all workers). The multi-leader setting is well-aligned with current hardware architecture, where local workers forming a group lie within a single computational node and different groups correspond to different nodes. For training convolutional neural networks, we empirically demonstrate that our approach compares favorably to state-of-the-art baselines.
Revisiting the limits of MAP inference by MWSS on perfect graphs
Adrian Weller, May 2015. (In 18th International Conference on Artificial Intelligence and Statistics). San Diego, California.
Abstract▼ URL
A recent, promising approach to identifying a configuration of a discrete graphical model with highest probability (termed MAP inference) is to reduce the problem to finding a maximum weight stable set (MWSS) in a derived weighted graph, which, if perfect, allows a solution to be found in polynomial time. Weller and Jebara (2013) investigated the class of binary pairwise models where this method may be applied. However, their analysis made a seemingly innocuous assumption which simplifies analysis but led to only a subset of possible reparameterizations being considered. Here we introduce novel techniques and consider all cases, demonstrating that this greatly expands the set of tractable models. We provide a simple, exact characterization of the new, enlarged set and show how such models may be efficiently identified, thus settling the power of the approach on this class.
Comment: Also accepted for presentation at the 21st International Conference on Principles and Practice of Constraint Programming (CP 2015)
Uprooting and Rerooting Graphical Models
Adrian Weller, June 2016. (In 33rd International Conference on Machine Learning). New York, NY.
Abstract▼ URL
We show how any binary pairwise model may be ‘uprooted’ to a fully symmetric model, wherein original singleton potentials are transformed to potentials on edges to an added variable, and then ‘rerooted’ to a new model on the original number of variables. The new model is essentially equivalent to the original model, with the same partition function and allowing recovery of the original marginals or a MAP configuration, yet may have very different computational properties that allow much more efficient inference. This meta-approach deepens our understanding, may be applied to any existing algorithm to yield improved methods in practice, generalizes earlier theoretical results, and reveals a remarkable interpretation of the triplet-consistent polytope.
Characterizing Tightness of LP Relaxations by Forbidding Signed Minors
Adrian Weller, June 2016. (In 32nd Conference on Uncertainty in Artificial Intelligence). Jersey City, NJ.
Abstract▼ URL
We consider binary pairwise graphical models and provide an exact characterization (necessary and sufficient conditions observing signs of potentials) of tightness for the LP relaxation on the triplet-consistent polytope of the MAP inference problem, by forbidding an odd-K5 (complete graph on 5 variables with all edges repulsive) as a signed minor in the signed suspension graph. This captures signs of both singleton and edge potentials in a compact and efficiently testable condition, and improves significantly on earlier results. We provide other results on tightness of LP relaxations by forbidding minors, draw connections and suggest paths for future research.
Clamping Improves TRW and Mean Field Approximations
Adrian Weller, Justin Domke, May 2016. (In 19th International Conference on Artificial Intelligence and Statistics). Cadiz, Spain.
Abstract▼ URL
We examine the effect of clamping variables for approximate inference in undirected graphical models with pairwise relationships and discrete variables. For any number of variable labels, we demonstrate that clamping and summing approximate sub-partition functions can lead only to a decrease in the partition function estimate for TRW, and an increase for the naive mean field method, in each case guaranteeing an improvement in the approximation and bound. We next focus on binary variables, add the Bethe approximation to consideration and examine ways to choose good variables to clamp, introducing new methods. We show the importance of identifying highly frustrated cycles, and of checking the singleton entropy of a variable. We explore the value of our methods by empirical analysis and draw lessons to guide practitioners.
Clamping Variables and Approximate Inference
Adrian Weller, Tony Jebara, 2014. (In Advances in Neural Information Processing Systems 28). Edited by Z. Ghahramani, M. Welling, C. Cortes, N.D. Lawrence, K.Q. Weinberger. Curran Associates, Inc..
Abstract▼ URL
It was recently proved using graph covers (Ruozzi, 2012) that the Bethe partition function is upper bounded by the true partition function for a binary pairwise model that is attractive. Here we provide a new, arguably simpler proof from first principles. We make use of the idea of clamping a variable to a particular value. For an attractive model, we show that summing over the Bethe partition functions for each sub-model obtained after clamping any variable can only raise (and hence improve) the approximation. In fact, we derive a stronger result that may have other useful implications. Repeatedly clamping until we obtain a model with no cycles, where the Bethe approximation is exact, yields the result. We also provide a related lower bound on a broad class of approximate partition functions of general pairwise multi-label models that depends only on the topology. We demonstrate that clamping a few wisely chosen variables can be of practical value by dramatically reducing approximation error.
Comment: Supplementary Material
Tightness of LP Relaxations for Almost Balanced Models
Adrian Weller, Mark Rowland, David Sontag, May 2016. (In 19th International Conference on Artificial Intelligence and Statistics). Cadiz, Spain.
Abstract▼ URL
Linear programming (LP) relaxations are widely used to attempt to identify a most likely configuration of a discrete graphical model. In some cases, the LP relaxation attains an optimum vertex at an integral location and thus guarantees an exact solution to the original optimization problem. When this occurs, we say that the LP relaxation is tight. Here we consider binary pairwise models and derive sufficient conditions for guaranteed tightness of (i) the standard LP relaxation on the local polytope LP+LOC, and (ii) the LP relaxation on the triplet-consistent polytope LP+TRI (the next level in the Sherali-Adams hierarchy). We provide simple new proofs of earlier results and derive significant novel results including that LP+TRI is tight for any model where each block is balanced or almost balanced, and a decomposition theorem that may be used to break apart complex models into smaller pieces. An almost balanced (sub-)model is one that contains no frustrated cycles except through one privileged variable.
From parity to preference: Learning with cost-effective notions of fairness
M. B. Zafar, Isabel Valera, Manuel Rodriguez, Krishna P. Gummadi, Adrian Weller, December 2017. (In Advances in Neural Information Processing Systems 31). Long Beach, California.
Abstract▼ URL
The adoption of automated, data-driven decision making in an ever expanding range of applications has raised concerns about its potential unfairness towards certain social groups. In this context, a number of recent studies have focused on defining, detecting, and removing unfairness from data-driven decision systems. However, the existing notions of fairness, based on parity (equality) in treatment or outcomes for different social groups, tend to be needlessly stringent, limiting the overall decision making accuracy. In this paper, we draw inspiration from the fair-division and envy-freeness literature in economics and game theory and propose preference-based notions of fairness —- given the choice between various sets of decision treatments or outcomes, any group of users would collectively prefer its treatment or outcomes, regardless of the (dis)parity as compared to the other groups. Then, we introduce tractable proxies to design convex margin-based classifiers that satisfy these preference-based notions of fairness. Finally, we experiment with a variety of synthetic and real-world datasets and show that preference-based fairness allows for greater decision accuracy than parity-based fairness.
A Survey and Datasheet Repository of Publicly Available US Criminal Justice Datasets
Miri Zilka, Bradley Butcher, Adrian Weller, 2022. (Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track).
Abstract▼ URL
Criminal justice is an increasingly important application domain for machine learning and algorithmic fairness, as predictive tools are becoming widely used in police, courts, and prison systems worldwide. A few relevant benchmarks have received significant attention, e.g., the COMPAS dataset, often without proper consideration of the domain context. To raise awareness of publicly available criminal justice datasets and encourage their responsible use, we conduct a survey, consider contexts, highlight potential uses, and identify gaps and limitations. We provide datasheets for 15 datasets and upload them to a public repository. We compare the datasets across several dimensions, including size, coverage of the population, and potential use, highlighting concerns. We hope that this work can provide a useful starting point for researchers looking for appropriate datasets related to criminal justice, and that the repository will continue to grow as a community effort.
Transparency, Governance and Regulation of Algorithmic Tools Deployed in the Criminal Justice System: A UK Case Study
Miri Zilka, Holli Sargeant, Adrian Weller, 2022. (Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society).
Abstract▼ URL
We present a survey of tools used in the criminal justice system in the UK in three categories: data infrastructure, data analysis, and risk prediction. Many tools are currently in deployment, offering potential benefits, including improved efficiency and consistency. However, there are also important concerns. Transparent information about these tools, their purpose, how they are used, and by whom is difficult to obtain. Even when information is available, it is often insufficient to enable a satisfactory evaluation. More work is needed to establish governance mechanisms to ensure that tools are deployed in a transparent, safe and ethical way. We call for more engagement with stakeholders and greater documentation of the intended goal of a tool, how it will achieve this goal compared to other options, and how it will be monitored in deployment. We highlight additional points to consider when evaluating the trustworthiness of deployed tools and make concrete proposals for policy.
Scalable Infomin Learning
Yanzhi Chen, Weihao Sun, Yingzhen Li, Adrian Weller, 2022. (In Advances in Neural Information Processing Systems).
Abstract▼ URL
The task of infomin learning aims to learn a representation with high utility while being uninformative about a specified target, with the latter achieved by minimising the mutual information between the representation and the target. It has broad applications, ranging from training fair prediction models against protected attributes, to unsupervised learning with disentangled representations. Recent works on infomin learning mainly use adversarial training, which involves training a neural network to estimate mutual information or its proxy and thus is slow and difficult to optimise. Drawing on recent advances in slicing techniques, we propose a new infomin learning approach, which uses a novel proxy metric to mutual information. We further derive an accurate and analytically computable approximation to this proxy metric, thereby removing the need of constructing neural network-based mutual information estimators. Compared to baselines, experiments on algorithmic fairness, disentangled representation learning and domain adaptation verify that our method can more effectively remove unwanted information with limited time budget.
Iterative teaching by label synthesis
Weiyang Liu, Zhen Liu, Hanchen Wang, Liam Paull, Bernhard Schölkopf, Adrian Weller, 2021. (Advances in Neural Information Processing Systems).
Learning with hyperspherical uniformity
Weiyang Liu, Rongmei Lin, Zhen Liu, Li Xiong, Bernhard Schölkopf, Adrian Weller, 2021. (In International Conference On Artificial Intelligence and Statistics).
Orthogonal over-parameterized training
Weiyang Liu, Rongmei Lin, Zhen Liu, James M Rehg, Liam Paull, Li Xiong, Le Song, Adrian Weller, 2021. (In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition).
SphereFace Revived: Unifying Hyperspherical Face Recognition
Weiyang Liu, Yandong Wen, Bhiksha Raj, Rita Singh, Adrian Weller, 2022. (IEEE Transactions on Pattern Analysis and Machine Intelligence). IEEE.
Structural Causal 3D Reconstruction
Weiyang Liu, Zhen Liu, Liam Paull, Adrian Weller, Bernhard Schölkopf, 2022. (In European Conference on Computer Vision).
SphereFace2: Binary Classification is All You Need for Deep Face Recognition
Yandong Wen, Weiyang Liu, Adrian Weller, Bhiksha Raj, Rita Singh, 2022. (In International Conference on Learning Representations).
Towards principled disentanglement for domain generalization
Hanlin Zhang, Yi-Fan Zhang, Weiyang Liu, Adrian Weller, Bernhard Schölkopf, Eric P Xing, 2022. (In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition).