Research Papers Available
This page has not been updated in a while.
New papers are
available at the Machine
Learning Group Publication Website.
A more comprehensive list of
my papers can be found on my CV.
- Heller, K.A., Williamson, S., and Ghahramani, Z. (2008)
Statistical models for partial
membership.
Proceedings of the 25th International Conference on
Machine Learning (ICML-2008).
- van Gael, J., Saatci, Y., Teh, Y.-W., and Ghahramani, Z. (2008)
Beam sampling for the Infinite Hidden
Markov Model
Proceedings of the 25th International Conference on
Machine Learning (ICML-2008).
- Silva, R. Chu, W. and Ghahramani, Z. (2008).
Hidden common cause
relations in relational learning.
In Advances on Neural Information Processing
Systems (NIPS-2007).
- Zhang, J., Ghahramani, Z, and Yang, Y. (2008)
Flexible latent
variable models for multi-task learning.
Machine Learning.
- Rasmussen, C. E., de la Cruz, B.J., Ghahramani, Z. and Wild,
D.L. (2008)
Modeling and Visualizing
Uncertainty in Gene Expression Clusters using Dirichlet Process
Mixtures.
IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 1.
- Knowles, D. and Ghahramani, Z. (2007)
Infinite Sparse Factor Analysis
and Infinite Independent Components Analysis.
In 7th
International Conference on Independent Component Analysis and
Signal Separation (ICA 2007). Lecture Notes in Computer Science Series
(LNCS). Springer.
- F. Pérez-Cruz, Z. Ghahramani and M. Pontil, (2007) .
Conditional
Graphical Models.
In Predicting Structured Data, Edited by
G. H. Bakir, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar and
S. V. N. Vishwanathan, MIT Press, September.
- Ghahramani, Z., Griffiths, T.L., Sollich, P. (2007)
Bayesian nonparametric latent feature
models (with discussion and rejoinder).
Bayesian Statistics 8. Oxford University Press.
- Wolpert, D. M. and Ghahramani, Z. (to appear)
Bayes rule in perception, action and
cognition.
Gregory, R.L. (ed) The Oxford Companion to the Mind.
- Snelson, E., and Ghahramani, Z. (2007)
Local and global sparse
Gaussian process approximations.
In the Eleventh International
Conference on Artificial Intelligence and Statistics (AISTATS-2007). San Juan, Puerto Rico.
- Heller, K.A., and Ghahramani, Z. (2007)
A Nonparametric Bayesian Approach to
Modeling Overlapping Clusters.
In the Eleventh
International Conference on Artificial Intelligence and Statistics
(AISTATS-2007). San Juan, Puerto Rico.
- Silva, R., Heller, K.A., and Ghahramani, Z. (2007)
Analogical Reasoning with Relational Bayesian Sets.
In the Eleventh International Conference on Artificial
Intelligence and Statistics (AISTATS-2007). San Juan, Puerto Rico.
- Teh, Y.W., Gorur, D. and Ghahramani, Z. (2007)
Stick-breaking
Construction for the Indian Buffet.
In the Eleventh International Conference on Artificial
Intelligence and Statistics (AISTATS-2007). San Juan, Puerto
Rico.
- Meeds, E., Ghahramani, Z., Neal, R. and Roweis, S.T. (2007)
Modeling Dyadic Data with Binary Latent
Factors.
In Advances in Neural Information Processing Systems 19
(NIPS-2006). Cambridge, MA: MIT Press.
- Chu, W., Sindhwani, V., Keerthi, S., Ghahramani, Z. (2007)
Relational Gaussian Processes.
In Advances in Neural Information Processing Systems
19 (NIPS-2006). Cambridge, MA: MIT Press.
- Chu, W., Ghahramani, Z. and Wild, D.L. (2006)
Bayesian Segmental Models with
Multiple Sequence Alignment Profiles for Protein Secondary Structure
and Contact Map Prediction. IEEE/ACM
Transactions on Computational Biology and Bioinformatics,
3(2):98--113. April-June 2006 [featured cover article]
- Zhu, X., Kandola, J., Lafferty, J. and Ghahramani, Z. (2006)
Graph Kernels by Spectral
Transforms.
In Chapelle, O., Schoelkopf, B. and Zien, A. (eds) Semi-Supervised
Learning. MIT Press.
- Podtelezhnikov, A. A., Ghahramani, Z., Wild, D.L. (2006)
Learning about Protein Hydrogen Bonding by Minimizing Contrastive
Divergence.
Proteins: Structure, Function, and Bioinformatics. DOI:
10.1002/prot.21247, Published online 15 Nov 2006.
- Snelson, E., and Ghahramani, Z. (2006)
Variable noise and dimensionality
reduction for sparse Gaussian processes.
In Uncertainty in Artificial Intelligence (UAI-2006).
- Silva, R. and Ghahramani, Z. (2006)
Bayesian Inference for Gaussian Mixed Graph Models.
In Uncertainty in Artificial Intelligence (UAI-2006).
- Wood, F., Griffiths, T.L. and Ghahramani, Z. (2006)
A Non-Parametric Bayesian Method for Inferring Hidden Causes.
In Uncertainty in Artificial Intelligence (UAI-2006) pp. 536-543.
- Murray, I.A., Ghahramani, Z., and MacKay, D.J.C. (2006)
MCMC for doubly-intractable
distributions.
In Uncertainty in Artificial Intelligence (UAI-2006).
- Azran, A. and Ghahramani, Z. (2006)
A New Approach to Data Driven Clustering.
In International Conference on Machine Learning (ICML-2006).
- Azran, A. and Ghahramani, Z. (2006)
Spectral methods for automatic
multiscale data clustering.
In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR-2006).
- Heller, K.A. and Ghahramani, Z. (2006)
A Simple Bayesian Framework for
Content-Based Image Retrieval.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR-2006).
- Beal, M.J. and Ghahramani, Z. (2006)
Variational Bayesian
learning of directed graphical models with hidden variables.
Bayesian Analysis 1:793--832.
- Ghahramani, Z. and Heller, K.A. (2006)
Bayesian Sets.
In Advances in Neural Information Processing Systems
18 (NIPS-2005).
- Snelson, E. and Ghahramani, Z. (2006)
Sparse Gaussian Processes using
Pseudo-Inputs.
In Advances in Neural Information Processing Systems
18 (NIPS-2005).
- Murray, I., MacKay, D.J.C., Ghahramani, Z. and Skilling, J. (2006)
Nested Sampling for Potts
Models.
In Advances in Neural Information Processing Systems
18 (NIPS-2005).
- Griffiths, T.L., and Ghahramani, Z. (2006)
Infinite Latent
Feature Models and the Indian Buffet Process.
In Advances in Neural Information Processing Systems
18 (NIPS-2005).
- Kim, H.-C., Ghahramani, Z. (2006)
Bayesian Gaussian Process
Classification with the EM-EP Algorithm.
IEEE Transactions on Pattern Analysis and Machine Intelligence
28(12):1948--1959.
- Zhang, J., Ghahramani, Z. and Yang, Y. (2006)
Learning Multiple Related Tasks using
Latent Independent Component Analysis.
In Advances in Neural Information Processing Systems
18 (NIPS-2005).
- Snelson, E., and Ghahramani, Z. (2005)
Compact approximations to
Bayesian predictive distributions.
In Twenty-second International
Conference on Machine Learning (ICML-2005).
- Chu, W., and Ghahramani, Z. (2005)
Preference Learning with
Gaussian Processes.
In Twenty-second International
Conference on Machine Learning (ICML-2005).
- Heller, K.A. and Ghahramani, Z. (2005)
Bayesian Hierarchical
Clustering,
Gatsby Unit Technical Report GCNU-TR 2005-002. [ps] [pdf]
A shorter
version was published in the Twenty-second International Conference on Machine
Learning (ICML-2005). [pdf]
- Chu, W., and Ghahramani, Z. (2005)
Gaussian Processes for Ordinal
Regression
Journal of Machine Learning
Research, 6:1019--1041. [abstract]
- Griffiths, T. L., and Ghahramani, Z. (2005)
Infinite latent feature models and
the Indian buffet process.
Gatsby Unit Technical Report
GCNU-TR 2005-001.
- Murray, I. and Ghahramani, Z. (2005)
A note on the evidence and Bayesian
Occam’s razor.
Gatsby Unit Technical Report GCNU-TR
2005-003. August 2005. [Abstract, PDF, DjVu, JavaDjVu].
- Chu, W., Ghahramani, Z., Falciani, F., and Wild, D. L. (2005)
Biomarker Discovery
in Microarray Gene Expression Data with Gaussian
Processes.
Bioinformatics,
21(16):3385-3393.
[abstract] [official pdf file at Bioinformatics website]
- Zhu, X., Ghahramani, Z., and Lafferty, J. (2005)
Time-Sensitive Dirichlet Process
Mixture Models.
Carnegie Mellon University Technical
Report CMU-CALD-05-104.
- Beal, M.J., Falciani, F., Ghahramani, Z., Rangel, C., and Wild, D. L. (2005)
A Bayesian approach
to reconstructing genetic regulatory networks with hidden
factors.
Bioinformatics 21(3):349-356.
- Zhu, X., Kandola, J., Ghahramani, Z. and Lafferty, J. (2005)
Nonparametric Transforms of Graph Kernels for Semi-Supervised
Learning.
In Advances in Neural Information Processing
Systems 17. (NIPS-2004)
- Zhang, J., Ghahramani, Z. and Yang, Y. (2005)
A Probabilistic Model for
Online Document Clustering with Application to Novelty
Detection [ps]. [pdf]
In Advances in
Neural Information
Processing Systems 17. (NIPS-2004)
- Heller, K.A., and Ghahramani, Z. (2005)
Randomized Algorithms for
Fast Bayesian Hierarchical
Clustering.
Statistics and Optimization of Clustering Workshop,
Windsor, UK.
- Chu, W. Ghahramani, Z. and Wild D.L. (2004)
A Graphical Model for Protein Secondary
Structure Prediction.
In Proceedings of the Twenty-First
International Conference on Machine Learning
(ICML-2004). Morgan-Kaufmann, pp. 161-168.
- Murray, I. and Ghahramani, Z. (2004)
Bayesian Learning in
Undirected Graphical Models: Approximate MCMC
algorithms.
In
Uncertainty in Artificial Intelligence
(UAI-2004).
- Chu, W., Ghahramani, Z. and Wild, D.L. (2004)
A
graphical model for protein secondary structure
prediction [pdf]. [ps]
[webserver]
[slides]
[poster]
In Twenty-first International Conference on Machine
Learning (ICML-04). Banff, Alberta, Canada.
- Snelson, E., Rasmussen, C.E., and Ghahramani, Z. (2004)
Warped Gaussian Processes.
In
Advances in Neural Information Processing Systems
16. (NIPS-2003) Cambridge, MA: MIT Press.
- Qi, Y, Minka, T.P., Picard, R.W., and Ghahramani, Z. (2004)
Predictive Automatic Relevance Determination by Expectation
Propagation
In Twenty-first International Conference on Machine
Learning (ICML-04). Banff, Alberta, Canada.
- Tuttle, E. and Ghahramani, Z. (2004)
Propagating Uncertainty in POMDP Value
Iteration with Gaussian Processes [ps] [pdf]
Gatsby Technical Report.
- Ghahramani, Z. (2004)
Unsupervised Learning.
In Bousquet, O., von Luxburg, U. and Raetsch, G. Advanced Lectures in
Machine Learning. Lecture Notes in Computer Science 3176, pages
72-112. Berlin: Springer-Verlag.
- Minka, T.P., and Ghahramani, Z. (2003)
Expectation Propagation for Infinite Mixtures.
Technical Report,
presented at the NIPS 2003 Workshop on Nonparametric Bayesian Methods
and Infinite Models.
Talk and abstract at this
website.
- Kim, H.-C. and Ghahramani, Z. (2003)
The EM-EP Algorithm for Gaussian Process
Classification
In the Proceedings of the Workshop on
Probabilistic Graphical Models for Classification (at
ECML). Dubrovnik, Croatia.
- Zhu, X., Lafferty, J., and Ghahramani, Z. (2003)
Semi-Supervised Learning: From Gaussian
Fields to Gaussian Processes.
CMU tech report CMU-CS-03-175 , 2003.
[gzipped ps | pdf]
- Ghahramani, Z. and Kim, H.-C. (2003)
Bayesian Classifier Combination
Gatsby Technical Report
- Zhu, X.,
Lafferty, J. and Ghahramani, Z. (2003)
Combining
Active Learning and Semi-Supervised Learning Using
Gaussian Fields and Harmonic Functions.
In Proc. of the ICML 2003 workshop on The Continuum from
Labeled to Unlabeled Data in Machine Learning and Data
Mining. pp. 58-65
[gzipped ps | pdf]
-
Zhu, X., Ghahramani, Z. and Lafferty, J.(2003)
Semi-Supervised Learning Using Gaussian Fields
and Harmonic Functions
The Twentieth
International Conference on Machine Learning
(ICML-2003). pp 912-919[gzipped ps
| pdf]
-
Jin, R. and Ghahramani, Z. (2003)
Learning with Multiple
Labels.
In Advances in Neural Information Processing
Systems 15. Cambridge, MA: MIT Press.
-
Rasmussen, C. E. and Ghahramani, Z. (2003)
Bayesian Monte
Carlo.
In Advances in Neural Information Processing
Systems 15. Cambridge, MA: MIT Press.
- Ghahramani, Z. (2002)
Graphical models: parameter
learning.
In Arbib, M. A. (ed.) Handbook
of Brain Theory and Neural Networks, Second Edition. MIT Press.
- Ghahramani, Z. (2002)
Information Theory.
In Encyclopedia of Cognitive Science. Maxmillan Reference Ltd.
- Wild, D. L., Rasmussen, C. E., and Ghahramani, Z. (2002)
A Bayesian
approach to modeling uncertainty in gene expression
clusters. International Conference on Systems Biology (ICSB).
-
Zhu, X., and Ghahramani, Z. (2002) Towards Semi-Supervised Classification with Markov Random Fields
CMU CALD tech report CMU-CALD-02-106, 2002. [pdf]
-
Zhu, X., and Ghahramani, Z. (2002) Learning from Labeled and Unlabeled Data with Label Propagation
CMU CALD tech report CMU-CALD-02-107, 2002. [gzipped ps | pdf | short version]
-
Beal, M. J. and Ghahramani, Z. (2002)
The Variational Bayesian EM Algorithm for Incomplete Data: with
Application to Scoring Graphical Model Structures [pdf]
[abstract]
In Bayesian Statistics 7
- Ueda, N. and Ghahramani, Z. (2002)
Bayesian model search for mixture models based on optimizing
variational bounds
Neural
Networks 15: 1223-1241.
-
Beal, M. J., Ghahramani, Z. and Rasmussen, C. E. (2002)
The
Infinite Hidden Markov Model [ps.gz] [pdf]
[abstract]
In Dietterich, T.G., Becker, S. and Ghahramani, Z. (eds)
Neural Information Processing Systems 14: 577-585. Cambridge,
MA, MIT Press.
-
Rasmussen, C. E and Ghahramani, Z. (2002)
Infinite Mixtures of Gaussian Process
Experts [ps]
[abstract]
In Dietterich, T.G., Becker, S. and Ghahramani, Z. (eds)
Neural Information Processing Systems 14: 881-888. Cambridge,
MA, MIT Press.
- Korenberg, A.T. and Ghahramani, Z. (2002) A Bayesian view of motor adaptation.
Current Psychology of Cognition 21 (4-5): 537-564.
- Ghahramani, Z. and
Beal, M.J. (2001)
Propagation algorithms for
variational Bayesian learning [ps] [pdf] [abstract]
In Leen, T.K., Dietterich, T.G., and Tresp, V. (eds) Neural
Information Processing Systems 13:507-513. MIT Press.
- Rasmussen, C.E., and
Ghahramani, Z (2001)
Occam's Razor [ps] [pdf]
In Leen, T.K., Dietterich, T.G., and Tresp, V. (eds) Neural
Information Processing Systems 13:294-300. MIT Press.
-
Wolpert DM,
Ghahramani Z, Flanagan JR (2001)
Perspectives and problems in motor learning
Trends in Cognitive Science 5(11):487-494.
- Ghahramani, Z. (2001)
An Introduction to Hidden Markov Models and Bayesian Networks [ps] [pdf]
International Journal of Pattern Recognition and
Artificial Intelligence 15(1):9-42.
-
Ghahramani, Z. (2000)
Online Variational Bayesian Learning [pdf] [ps]
Slides from talk presented at NIPS 2000 workshop on Online
Learning.
Joint work with H. Attias
-
Roweis, S. and Ghahramani, Z. (2000)
An EM Algorithm for Identification of Nonlinear Dynamical Systems [ps] [pdf]
Preprint.
- Ghahramani, Z. and
Beal, M.J. (2000)
Graphical models and variational methods
In Saad & Opper (eds)
Advanced Mean Field Method---Theory and Practice. MIT
Press
- Wolpert, D.M. and
Ghahramani, Z. (2000)
Computational Principles of
Movement Neuroscience .
Nature Neuroscience
3 supp:1212--1217.
- Ghahramani,
Z. (2000)
Building blocks of
movement (News & Views, on Thoroughman and Shadmehr article).
Nature
407:682--683.
-
Ghahramani, Z. and Beal, M.J. (1999)
Variational inference for Bayesian mixtures of factor
analysers [ps] [pdf]
[abstract]
In Neural Information Processing Systems 12
- Ueda, N., Nakano,
R., Ghahramani, Z., and Hinton, G. E. (2000)
SMEM Algorithm for Mixture
Models. [ps] [pdf]
In Neural Computation 12(9):2109-2128.
- Ghahramani, Z. and Roweis, S. (1999)
Learning nonlinear dynamical systems
using an EM algorithm.
In M. S. Kearns, S. A. Solla,
D. A. Cohn, (eds.) Advances in Neural Information Processing
Systems 11:599-605. MIT Press.
- Jordan, M.I, Ghahramani, Z., Jaakkola, T.S., and Saul, L.K. (1999)
An introduction to variational methods for graphical models
Machine Learning 37:183-233.
- Roweis, S. and
Ghahramani, Z. (1999)
A Unifying Review of Linear Gaussian Models
Neural Computation 11(2):305--345 [abstract]
- Ghahramani, Z., Korenberg, A., and Hinton, G.E. (1999)
Scaling in a Hierarchical Unsupervised
Network. In ICANN 99: Ninth
international conference on Artificial Neural Networks
-
Ghahramani, Z. and Hinton, G.E. (2000)
Variational learning for switching state-space models
Neural Computation, 12(4):963-996. [abstract]
-
Ghahramani, Z. (1998)
Learning Dynamic Bayesian Networks
In C.L. Giles and M. Gori (eds.), Adaptive Processing
of Sequences and Data Structures . Lecture Notes in Artificial
Intelligence, 168-197. Berlin: Springer-Verlag. [abstract]
- Ghahramani, Z. and
Hinton, G.E. (1998)
Hierarchical Nonlinear Factor Analysis and Topographic Maps
In Jordan, M.I, Kearns, M.J., and Solla,
S.A. Advances in Neural Information Processing Systems
10. MIT Press: Cambridge, MA. [abstract]
- Ghahramani, Z. and Wolpert, D.M. (1997)
Modular
Decomposition in Visuomotor Learning
Nature 386:392-395. [abstract]
- Ghahramani, Z., Wolpert, D.M. and Jordan, M.I. (1997)
Computational
Models of Sensorimotor Integration
In P. G. Morasso and
V. Sanguineti (eds.), Self-Organization, Computational Maps and
Motor Control, Elsevier Press, pp. 117-147. [abstract] [postscript] [pdf]
- Hinton, G.E. and Ghahramani, Z. (1997)
Generative Models for Discovering Sparse Distributed
Representations [pdf] [ps.gz]
Philosophical Transactions Royal Society B,
352:1177-1190. [abstract]
Software written in Matlab.
- Ghahramani, Z. (1997, revised 2002)
On Structured Variational Approximations [pdf] [ps]
University of Toronto Technical Report CRG-TR-97-1, 6 pages
(short note)
- Hinton, G.E., Sallans, B. and Ghahramani, Z. (1997)
A Hierarchical Community of Experts [pdf]
[ps.gz]
In M.I. Jordan (ed.), Learning in
Graphical Models, Kluwer Academic Publishers
- Ghahramani, Z. and Jordan, M.I. (1997)
Factorial Hidden Markov Models
Machine
Learning 29: 245-273. [abstract]
Software written in Matlab.
- Jordan, M.I, Ghahramani, Z. and Saul, L.K. (1997)
Hidden Markov Decision Trees [pdf] [ps.gz]
In
Advances in Neural Information Processing Systems 9,
7 pages.
- Ghahramani, Z. and Hinton, G.E. (1996)
The EM
Algorithm for Mixtures of Factor Analyzers [pdf] [ps]
University of Toronto
Technical Report CRG-TR-96-1, 8 pages (short note).
Software written in Matlab.
- Ghahramani, Z. and Hinton, G.E. (1996)
Parameter estimation for
linear dynamical systems [pdf] [ps]
University of Toronto Technical Report
CRG-TR-96-2, 6 pages (short note).
- Cohn, D.A., Ghahramani, Z., and Jordan, M.I. (1996)
Active Learning with Statistical Models [pdf] [ps]
Journal
of Artificial Intelligence Research 4: 129-145. [abstract]
- Ghahramani, Z., Wolpert, D.M. and Jordan, M.I. (1996)
Generalization
to Local Remappings of the Visuomotor Coordinate
Transformation
Journal of Neuroscience 16:7085-7096. [abstract] [pdf]
- Wolpert, D.M., Ghahramani, Z. and Jordan, M.I. (1995)
An Internal
Model for Sensorimotor Integration
Science 269:
1880-1882. [abstract]
- Ghahramani, Z. (1995)
Factorial Learning and the EM Algorithm [pdf] [ps]
In G. Tesauro, D.S. Touretzky, and J. Alspector (eds.),
Advances in Neural Information Processing Systems 7, 8
pages. [abstract]
- Ghahramani, Z., Wolpert, D.M. and Jordan, M.I. (1995)
Computational
structure of coordinate transformations: A generalization study
In G. Tesauro, D.S. Touretzky, and J. Alspector (eds.), Advances
in Neural Information Processing Systems 7 [8 pages] [abstract]
- Ghahramani, Z. (1995)
Computation
and Psychophysics of Sensorimotor Integration [ps.gz]
Ph.D. Thesis,
Dept. of Brain and Cognitive Sciences, Massachusetts Institute of
Technology, 171 pages, 1 MB. [abstract]
- Ghahramani, Z. and Jordan, M.I. (1994)
Learning from incomplete data [pdf] [ps.gz]
MIT Center for Biological and Computational
Learning Technical Report 108, 16 pages.
[abstract]
- Ghahramani, Z. and Jordan, M.I. (1994)
Supervised learning from
incomplete data via an EM approach [ps] [pdf]
In Cowan, J.D., Tesauro, G., and
Alspector, J. (eds.). Advances in Neural Information Processing
Systems 6, 8 pages. [abstract]
- Ghahramani, Z. (1994)
Solving inverse problems using an EM approach to
density estimation [pdf][ps.gz]
In M.C. Mozer, P. Smolensky, D.S. Touretzky,
J.L. Elman, & A.S. Weigend (eds.), Proceedings of the 1993
Connectionist Models Summer School, 8 pages. [abstract]
Back to homepage